Understanding AML
Casey O’Connell, MD
Associate Professor, Jane Anne Nohl Division of Hematology
Keck School of Medicine, USC

First Let’s Look at Our Blood…

Bone Marrow: The Blood Cell Factory

Blood: 3 Major Cell Types

ADDITIONAL RESOURCES
- www.keckmedicine.org/rare-blood-diseases
 Video “How to Read Your CBC”

How Does a Factory Making 310,000,000,000 cells Daily Function for 80+ Years?????
1. **Needs Ingredients**: proteins, iron, oxygen, B12, Folate, copper, etc.
2. **Needs Stimulus**: Erythropoietin – from the kidneys stimulates Red Cell Production
 GCSF – from blood vessel lining, immune cells stimulates WBC Production
 Thrombopoietin – from the liver stimulates Platelet Production
3. **Needs Source**: STEM CELLS

RED CELLS: Carry oxygen to all the organs

PLATELETS: Help heal cuts or nicks on SKIN, MUCOSA (gums, nose, gut)

WHITE BLOOD CELLS: fight infection, help with healing
ACUTE MYELOID LEUKEMIA

• **1855** Alfred Donne: “There are conditions in which white cells seem to be in excess in the blood. I found this fact so many times, it is so evident in certain patients, that I cannot conceive the slightest doubt in this regard….The blood of this patient showed such a number of white cells that I thought his blood was mixed with pus....”

Acute Myeloid Leukemia Defined

• >20 “BLASTS” in blood or bone marrow
• Usually associated with worsening anemia and thrombocytopenia
• Often requires bone marrow biopsy to diagnose

WHO CRITERIA FOR AML
Defective HSCs lead to defective blood cell production

- Decreased/Defective (“Ineffective”) Red Cell Production = **ANEMIA**
 - Fatigue, shortness of breath, weakness, fainting, heart attack, stroke
- Decreased/Defective Platelet Production = **Thrombocytopenia**
 - Bruising, gum bleeding, nose bleeding, red dots on skin (petechiae)
- Decreased/Defective White Blood Cell Production = **Neutropenia**
 - Infections, fatigue, poor wound healing

WHY DOES AML HAPPEN?

- Genetic/Molecular defect in DNA affecting **HEMATOPOIETIC STEM CELLS (HSCs)**
 - Sometimes (50%) we can see this DNA defect in the karyotype (i.e. 46XX, 45XX, -5q)
 - Sometimes (90%) we can only see the DNA defect with special molecular studies (e.g. TET2 mutation, IDH2 mutation)

What Causes AML?

- Acquired DNA damage…
 - Chemotherapy
 - Benzene/chemicals
 - Radiation
 - Immune Dysregulation?
 - MAJORITY: IDIOPATHIC
- People are living longer after chemo…

How Do We FIND Mutations? **3 Levels of Gene Testing:**

1. **CYTOGENETICS** – usually done in MPN patients on their bone marrow sample
2. **FISH** – can be used to detect a mutation that may be missed by cytogenetics
3. **PCR** – most sensitive, relies on amplification of the DNA present in the sample

There Are Different Types of Mutations
Progress in defining the molecular landscape of AML. Timing of the identification of leukemic fusion genes and mutations underlying the pathogenesis of AML. David Grimwade et al. Blood 2016;127:29-41

NEW CASES 2016: 19,550

Projected relative 5-year survival in AML according to age and time period, with follow-up on December 31, 2006. Gunnar Juliusson et al. Blood 2012;119:3890-3899

AML Risk Stratification

AGE > 65 = poorer response to induction chemotherapy
Treatment-related AML more likely to have complex cytogenetics
Post-MDS/MPN AML = poorer response to traditional chemotherapy

Figure 2: Age-Specific Incidence Rates for Acute Myeloid Leukemia, 2006 - 2010

Source: US Dept of Health and Human Services, Centers for Disease Control and Prevention 2018

CPX-351 (Vyxeos) – Liposomal ARA-C + Daunorubicin

Published in: Jeffrey E. Lancet; Geoffrey L. Uy; Jorge E. Cortes; Laura F. Newell; Tara L. Lin; Ellen K. Ritchie; Robert K. Sture; Stephen A. Strickland; Donna Hogge; Scott R. Solomon; Richard M. Stone; Dale L. Bixby; Jonathan E. Kolitz; Gary J. Schiller; Matthew J. Wieduwilt; Daniel H. Ryan; Antje Hoering; Kamali Banerjee; Michael Chiarella; Arthur C. Louie; Bruno C. Medeiros; Journal of Clinical Oncology 2018, 36, 2684-2692. DOI: 10.1200/JCO.2017.77.6112

Copyright © 2018 American Society of Clinical Oncology
AML with FLT3+: 7+3 + Midostaurin

AML: Why Does Allo-SCT Work?

Engages a healthy immune system (Donor’s) in fighting the aberrant cells (Recipient’s) = “graft vs. leukemia”

AML Therapy >65 yo

Methyl Groups Silence Tumor Suppressor Genes – Cancers are Highly Methylated

2 FDA-approved Hypomethylating Agents:
- VIDAZA (5-azacytidine)
- DACOGEN (decitabine)

1 Novel HMA in Clinical Trials:
- SGI-110

2017-07-11(H 기간)
Active Clinical Trials

- **Frontline Guadecitabine Falls Short in Phase III AML Study**
- **Venetoclax** (Bcl-2 inhibitor) Promising results in Phase ½
 - CPX-351 + venetoclax in R/R or Untreated (MD Anderson)
 - Venetoclax and azacitidine for non-elderly (Univ Colorado)
 - Venetoclax + cabimetinib & Venetoclax + Dinaciclib
- **IDH1 inhibitor** (USC)
- **PARP inhibitor + Decitabine** (USC)
- **Flt3 inhibitors** (USC/UCLA/COH)
- **Lintuzumab-Ac225** (UCLA)
- Immune checkpoint inhibition

QUESTIONS?