New Directions in Aplastic Anemia Treatment: What’s on the Horizon?

AA&MDS International Foundation
Living with Aplastic Anemia, MDS, or PNH Patient and Family Conferences in 2015

NEW ASPECTS AND TRENDS IN AA

• New concepts in understanding of disease mechanisms
• Biomarkers/new diagnostics
• Management issues
• New potential therapies
MUTATIONS

- Germ line mutations: from both or one of the parents “gene variants which run in the family”
- Somatic acquired in some, but not in all cells in the body: e.g., leukemic and MDS hematopoietic stem cells

Somatic mutations are present in all cells of the body and are easy to detect.

IMPORTANCE OF TELOMERES IN AA:
TELOMERASE MUTATIONS AS EXEMPLARY GERM LINE MUTATIONS

- Telomeres are DNA caps which protect ends of chromosomes
- Telomeres shorten with each cell division and thus with age
- Telomerase is needed to prevent telomeres from shortening

Germ line mutations in telomerase cause rare familiar aplastic anemia

IMPORTANCE OF TELOMERE LENGTH IN AA

Telomere Length and Disease Relapse

[Graph showing telomere length and disease relapse over follow-up time]
IMPORTANCE OF TELOMERES IN AA

Telomere Length as a predictor for clonal evolution in AA

NEW GENERATION SEQUENCING

- We can now screen all the cell in the body for the presence of mutations.
- Till recently if mutation was present in only a few cells, detection was not possible
- Now it is possible to find mutations in a few cells and screen for the presence of mutations in many genes at once
- What would take 5 years ago 10 years for 100 technicians, can be done now in 2 days by 1 person: genomic revolution!

WITH NEW GENERATION SEQUENCING IS IT POSSIBLE TO IDENTIFY OTHER (than telomerase) GERM LINE MUTATIONS PREDISPOSING TO AA?

Preliminary data suggests that other mutations involved may be also present in AA.
Heterozygous Fanconi Anemia gene mutations,
DNA repair genes and other genes
Concepts of incomplete penetrance or disease anticipation… weak mutations vs. strong mutations
DETECTION OF SOMATIC MUTATIONS IN AA USING NEW GENERATION SEQUENCING

WHAT TRIGGERS IMMUNE AA?

CAN ABNORMAL/MUTANT STEM CELL BE A TRIGGER?

Immunilty has role in fighting infections or tumor surveillance

Thus is autoimmune response in AA reacting or overreacting to the presence of abnormal potentially malignant cells?

Potential outcomes:
- Elimination
- Overreaction less specificity - normal cells in cross
- Overwhelmed --- evolution of MDS

Adapted from Maciejewski & Young, NEJM 1995
NEW ASPECTS AND TRENDS IN AA

- New concepts in understanding of disease mechanisms
- Biomarkers/new diagnostics
- Management issues
- New potential therapies

CAN THE PRESENCE OF MUTATIONS PREDICT LATER EVOLUTION OF MDS OR RESPONSE TO IMMUNOSPRESSION?

FREQUENCY OF MUTATIONS AA: ARE MUTATIONS USEFUL BIOMARKERS?

Mutations were found in ~1/3 of patients, of which 1/3 had multiple mutations.

CHRONOLOGICAL BEHAVIOUR OF COMMON MUTANT CLONES

DNMT3A and ASXL1-mutated clones tended to expand. BCOR/BCORL1- or PIGA-mutated clones tend to shrink or remain stable.
Detection of Somatic Mutations in AA

- Targeted deep NGS
- WES

Detection of mutations at presentation 8/18 (20 events)

Somatic mutations 18/18

Can Better Cytogenetic Analysis Help to Diagnose MDS?

- More chromosomal defects detected by SNP-Array Karyotyping compared to metaphase cytogenetics in AA and hypocellular MDS

Aplastic Anemia

- MC
  - Normal
  - No Growth

Hy po cellular MDS

- MC
  - Normal
  - No Growth

SNP-A

Can A Simple Clinical Parameter Be A Useful Biomarker?

Predictive/Prognostic Biomarkers (ARC and ALC)

- NIH Study of 316 SAA patients (1988-2005)
- Defining important predictors of response to hATG+CsA therapy at 6 mos of therapy
- Factors looked at include age, PNH clone, hematological factors like ANC, platelet count, Hgb, Absolute reticulocyte count (ARC), absolute lymphocyte count (ALC)
- Presence of PNH clone is defined as presence of positive Ham (not for samples until yr 2000 and subsequently GPI-(neg)
- Neutrophils or red cells >1%
- ARC and ALC are predictive

Scheinberg P et al. BJH. 2008

- NIH Study of 316 SAA patients (1988-2005)
- Defining important predictors of response to hATG+CsA therapy at 6 mos of therapy
- Factors looked at include age, PNH clone, hematological factors like ANC, platelet count, Hgb, Absolute reticulocyte count (ARC), absolute lymphocyte count (ALC)
- Presence of PNH clone is defined as presence of positive Ham (not for samples until yr 2000 and subsequently GPI-(neg)
- Neutrophils or red cells >1%
- ARC and ALC are predictive

Scheinberg P et al. BJH. 2008
NEW ASPECTS AND TRENDS IN AA

- New concepts in understanding of disease mechanisms
- Biomarkers/new diagnostics
  - Management issues
  - New potential therapies

IMPORTANT CLINICAL QUESTIONS TO BE ANSWERED

- Does the presence of PNH clone indicate that AA will never be completely cured?
- Is not achieving totally normal counts compatible with future cure?
- Will the usage of Promacta, Neupogen or similar agents stimulate outgrowth of later MDS?
- Are minor changes worth: CsA/Prograft etc…?
- Does lack of response to intense immunosuppression indicate that the disease is not immune-mediated?
- How to treat not severe AA?

NEW ASPECTS AND TRENDS IN AA

- New concepts in understanding of disease mechanisms
- Biomarkers/new diagnostics
- Management issues
  - New potential therapies
NEW THERAPEUTIC ASPECTS: GROWTH FACTORS

Concept: to stimulate and optimize stem cell growth/recovery

- G-CSF (Neupogen or Neulasta)
- Thrombopoietin (Nplate)
- Eltrombopag (Promacta)
- Erythropoietin Procrit/Aransep
- Combinations

Supportive care: in combination with immunosuppression
Salvage therapy: prolonged therapy, multilineage responses

However, questions of progression to MDS or AML were raised although not proven

NEW THERAPEUTIC ASPECTS: IMMUNOSUPPRESSION

Concept: immunosuppression and immunomodulation

Older agents:
- Prograf vs. Cyclosporine
- Campath dose and route of administration

New agents with success in other diseases:
- Arena, Abatacept (soluble CTLA4)
- Amevive, Alefacept (Soluble LFA-3)
- Xeljanz (tofacinib)
- Stelara (ustekinumab)
- Actemra (Tocilizumab)

ADULT STEM CELL RETRO-DIFFERENTIATION

- All cells in the body have a silenced potential to produce all tissues, this potential is encoded in the DNA which is identical in all cells.

- Multipotent stem cells have a potential to produce all tissues, similar to the ultimate stem cell: the fertilized egg.

- Through a process of differentiation, tissues and organs are formed and assume specific function and shape

Why it would not be possible to isolate cells and revert them into a multipotent stem cell and direct their program to regenerate diseased tissues?
POTENTIAL OF THE ADULT STEM CELLS

Skin cells

Transfer of 4 genes important for stem cells So that they are turned on

Retrodifferentiation

Marker gene

Multipotent stem cell

Transfer into 8 cell embryo

Mouse with green organs

THERAPEUTIC POTENTIAL OF THE ADULT STEM CELLS

Allogeneic bone marrow transplant is limited by the availability of the donor, toxicity of GvHD and inability to replace diseased bone marrow stem cells

Retrodifferentiation

Skin cells

Therapy of leukemia aplastic anemia

Expansion

Differentiation into bone marrow stem cells

Marrow stem cells

Transplant to replace Damaged stem cells