New Directions in MDS Treatment: What's on the Horizon?

Tim Graubert, MD
Aplastic Anemia & MDS International Foundation
Patient and Family Conference
September 19, 2015

Types of Research Studies

<table>
<thead>
<tr>
<th>Preclinical</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>Observational</td>
</tr>
<tr>
<td>In vivo</td>
<td>Interventional (purpose)</td>
</tr>
<tr>
<td></td>
<td>• Phase 1 (safe?)</td>
</tr>
<tr>
<td></td>
<td>• Phase 2 (effective?)</td>
</tr>
<tr>
<td></td>
<td>• Phase 3 (superior?)</td>
</tr>
<tr>
<td></td>
<td>• Phase 4 (safety)</td>
</tr>
</tbody>
</table>

MDS: Diagnosis/Classification

Cytopenia(s):
- Hb <11 g/dL, or
- ANC <1500/μL, or
- Platelets <100 x 10^9/L

And:

MDS “decisive” criteria:
- >10% dysplastic cells in 1 or more lineages, or
- 5-19% blasts, or
- Abnormal karyotype typical for MDS, or
- Evidence of clonality (by FISH or Cytogenetics)

MDS: Diagnosis/Classification

Secondary AML:
- ≥20% myeloblasts in marrow or blood,
or
- Abnormal karyotype typical for AML
e.g., inv(16), t(8;21), t(15;17)

MDS: Diagnosis/Classification

Differential Diagnosis:
exclude other causes of cytopenias and dysplasia!

- Vitamin B12/folate deficiency
- HIV or other viral infection
- Copper deficiency
- Alcohol abuse
- Medications (esp. methotrexate, azathioprine, recent chemotherapy)
- Autoimmune conditions (ITP, Felty syndrome, SLE etc.)
- Congenital syndromes (Fanconi anemia etc.)
- Other hematological disorders (aplastic anemia, LGL disorders, MPN etc.)
MDS: Diagnosis/Classification

Essential testing:

<table>
<thead>
<tr>
<th>Test</th>
<th>To evaluate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow aspirate</td>
<td>Dysplasia, Blast count</td>
</tr>
<tr>
<td>Bone marrow biopsy</td>
<td>Cellularity, Iron content, Fibrosis</td>
</tr>
<tr>
<td>Cytogenetics (FISH)</td>
<td>Chromosomal lesions</td>
</tr>
<tr>
<td>B12, folate, Cu</td>
<td>Other causes</td>
</tr>
</tbody>
</table>

Not currently standard of care:

<table>
<thead>
<tr>
<th>Test</th>
<th>To evaluate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP array</td>
<td>Copy number alterations</td>
</tr>
<tr>
<td>Flow cytometry</td>
<td>Aberrant antigen expression</td>
</tr>
<tr>
<td>Sequencing</td>
<td>Mutations</td>
</tr>
</tbody>
</table>

What is a mutation?

...TTGAGTCG....

...TTGAGTAG....

Why should we care about gene mutations in MDS?

1. **Biology**
 - Mutations give us clues about what went wrong with MDS cells.

2. **Diagnosis**
 - Mutations help us diagnose other bone marrow diseases.
 - (e.g., BCR/ABL = CML; JAK2V617F = Polycythemia vera)

3. **Prognosis**
 - Mutations help us predict outcome in other bone marrow diseases.
 - (e.g., DNMT3A in acute myeloid leukemia)

4. **Therapy**
 - Mutations help us choose the right drugs in other bone marrow diseases.
 - (e.g., BCR/ABL -> Imatinib)

MDS: Diagnosis/Classification

<table>
<thead>
<tr>
<th>WHO 2008</th>
<th>Common Name</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory cytopenia with unilineage dysplasia (RCUD)</td>
<td>RA</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>RN</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td><1</td>
</tr>
<tr>
<td>Refractory anemia with ring sideroblasts</td>
<td>RARS</td>
<td>5</td>
</tr>
<tr>
<td>5q- syndrome</td>
<td>del(5q)</td>
<td>5</td>
</tr>
<tr>
<td>Refractory cytopenia with multilineage dysplasia</td>
<td>RCMRD</td>
<td>20</td>
</tr>
<tr>
<td>Refractory anemia with excess blasts, type 1</td>
<td>RAEB-1</td>
<td>20</td>
</tr>
<tr>
<td>Refractory anemia with excess blasts, type 2</td>
<td>RAEB-2</td>
<td>20</td>
</tr>
<tr>
<td>Unclassifiable</td>
<td>MDS-U</td>
<td>~10</td>
</tr>
<tr>
<td>Childhood MDS</td>
<td>RCC</td>
<td>Rare</td>
</tr>
</tbody>
</table>

Proposed WHO 2016 Revisions:

1. Eliminate “RA/RC” (e.g., RARS becomes MDS-RS)
 - Rationale: cytopenias captured in IPSS-R

2. MDS-RS definition broadened
 - Include multilineage dysplasia
 - Allow <15% RS if SF3B1 mutation present

3. MDS-del(5q) broadened
 - Allow one additional non-high risk cytogenetic lesion

4. Erythroid precursors no longer added to blast count
 - Avoids major clinical impact of diagnosing AEL vs. RAEB
Risk Stratification: IPSS (1997)

<table>
<thead>
<tr>
<th>Prognostic Variable</th>
<th>Score Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marrow Hts (%)</td>
<td>≤5, >5-10, ≥11.0, 21-30</td>
</tr>
<tr>
<td>Cytopenias (*)</td>
<td>0, Good, Intermediate, Poor</td>
</tr>
</tbody>
</table>

Parameter Categories and Associated Scores

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Categories and Associated Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytogenetics</td>
<td>Very good</td>
</tr>
<tr>
<td>Blasts</td>
<td>≤2%</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>≥10</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>≥0.8</td>
</tr>
<tr>
<td>Platelets</td>
<td>≥100</td>
</tr>
</tbody>
</table>

In general, this is NOT rocket science*

- Better blood counts are good
- Not needing transfusions is good
- Lower blasts are good
- Having fewer genetic abnormalities is good
- Younger age is good
- Being able to function better is good

* Mikkael Sekeres, Cleveland Clinic

MDS: Prognosis/Risk Stratification

* Caveats:
 - at diagnosis only
 - no disease-modifying therapy
 - de novo only

Existing Therapies for MDS

FDA-approved disease-modifying therapies:
- Azacitidine
- Decitabine
- Lenalidomide

Others:
- Epo/G-CSF
- TPO agonists
- Iron chelation
- Immunosuppression (CSA/ATG)
- Stem cell transplantation

General Treatment Paradigm for MDS

![General Treatment Paradigm for MDS](https://example.com/paradigm.png)

* Bejar and Steensma, Blood, 2014

IPSS-R (2012)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Categories and Associated Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytogenetics</td>
<td>Very good</td>
</tr>
<tr>
<td>Blasts</td>
<td>≤2%</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>≥10</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>≥0.8</td>
</tr>
<tr>
<td>Platelets</td>
<td>≥100</td>
</tr>
</tbody>
</table>

IPSS-R: http://www.mds-foundation.org/ipss-r-calculator/

(Also iOS, Android apps)
Low Risk MDS

- Lower Risk (VG,GJ)
- Isolated Anemia?
 - Yes: del(5q)?
 - Yes: Len
 - No: EPO=500?
 - No: HMA, IST, Clinical Trial

High Risk MDS

- Higher Risk (LP,VP)
- AlloSCT candidate?
 - Yes: AlloSCT
 - No: HMA, Clinical Trial

When to transplant?

- INT-2/H (converse for L/INT-1)
- Similar results for myeloablative SCT
- Definitive prospective trial ongoing
- <1,000 SCT per year for MDS in US

MDS Therapy: what’s on the horizon?

MDS Pipeline:

- >500 studies in ClinicalTrials.gov open and accruing
- Key observational trials:
 - Connect MDS/AML Disease Registry (NCT01688011)
 - NHLBI MDS Natural History Study (forthcoming)

MDS Therapy: what’s on the horizon?

- Key therapeutic trials:
 - Oral Aza and DAC (various)
 - Eltrombopag (various)
 - Checkpoint inhibitors (various)
 - CAR-T (NCT02003825)
 - IDH inhibitors (various)
 - Impact of Deferasirox on EFS (NCT00940602)
 - SMAD2/3 inhibitors (various)
 - Splicing modulators (forthcoming)
LUSPATERCEPT INCREASES HEMOGLOBIN AND REDUCES TRANSFUSION BURDEN IN PATIENTS WITH LOW OR INTERMEDIATE-1 RISK MYELODYSPLASTIC SYNDROMES (MDS): PRELIMINARY RESULTS FROM A PHASE 2 STUDY

Uwe Platbecker, MD
U Platbecker¹, U Giergling¹, A Giagounidis², K Goetze³, M Hankin⁴, JD Keating⁵, M Radsak⁶, J Wolff⁷, M Wiethöft⁸, K Goetz⁹, D Wilson⁹, A Laadem⁹, M Sherman⁹ and K Attie¹
¹Marien Hospital Düsseldorf; ²Technical University of Munich; ³Oncologische Schwerpunktstelle Darmstadt; ⁴University Medical Center Hamburg-Eppendorf; ⁵University of Michigan; ⁶Dana Farber Cancer Institute; ⁷University of Minnesota; ⁸Acceleron Pharma, Cambridge, MA; ⁹Celgene Corporation, Summit, NJ, USA

A Phase 2, Dose-Finding Study of Sotatercept (ACE-011) in Patients With Lower-Risk Myelodysplastic Syndromes or Non-Proliferative Chronic Myelomonocytic Leukemia and Anemia Requiring Transfusion

Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA; Department of Leukemia and Hematopoietic Malignancies, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Leukemia, Lazzaro Spallanzani National Institute of Haematology, Rome, Italy; Department of Leukemia, Fox Chase Cancer Center, Philadelphia, PA, USA; Department of Leukemia/Myelodysplastic Syndrome, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Hematology and Medical Oncology, University Medicine of Goettingen, Germany; Department of Hematology and Medical Oncology, University of Minnesota, Minneapolis, MN, USA; Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Hematology, University of Goettingen, Germany; Department of Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; Department of Hematology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; Department of Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; Department of Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Sotatercept Preliminary Results

Luspatere PACE-MDS Study Overview

- Phase 2, multicenter, open-label, dose-finding study in IPSS low/int-1 MDS
- Eligibility criteria:
 - nonresponsive/refractory to EPO or EPO > 500 UI/mL; no prior azacitidine or decitabine; no prior lenalidomide, ESA, G-CSF
- Primary efficacy endpoint:
 - Low transfusion burden (HTB, < 4U RBC/8 weeks): Hemoglobin increase of ≥ 1.5 g/dL for ≥ 2 weeks
 - High transfusion burden (HTB, ≥ 4U RBC/8 weeks):
 - Reduction of ≥24U or ≥50% units transfused over 8 weeks
- Luspatere administered SC every 3 weeks for 3 months in base study
- Patients may be eligible for additional 12 months treatment in extension study

NCT01749514
eudataCT 2012-002523-14

Luspatere high dose group

- **Transfusion Independence (TI)**
 - 10/28 (36%) patients achieved transfusion independence
- **Onset of TI**
 - 9 of the 10 TI patients had onset within the first 6 weeks of treatment
- **Duration of TI**
 - All 10 achieved transfusion independence for ≥10 weeks in this 3-month treatment study

Transfusion Independence: Transfusion-free for ≥8 weeks on treatment for patients who received at least one transfusion
Low Risk MDS

ELTROMBOPAG FOR LOW TO INT-2 RISK MDS
Danielle Townsley, MD, MSc
Hematology Branch
NHLBI, NIH

- 2nd generation small molecule thrombopoietin (TPO) receptor agonist
- Orally administered non-peptide
- FDA accelerated approval in 2008 for treatment of chronic ITP

ELTROMBOPAG

PHASE II, ELTROMBOPAG FOR MDS: NCT00961064
IPSS Low to Int-2 (NO RAEB/CMML)
AND
Significant cytopenia (Plts<20 or ANC<500 or Hb<9)*

- Eltrombopag 50 mg daily
- Dose escalation every 2 weeks to 150 mg daily
- BM biopsies performed serially
- Hematologic response at 16 weeks
- Enrolled n=21
- Planned n=30

RESPONSE TO ELTROMBOPAG
de novo, hypercellular MDS
73 yo female, IPSS Int-1: RCUD, normal cytogenetics, tx naive
Enrollment: Anemia/Thrombocytopenia

High Risk MDS

- Higher Risk (LP,VP)
- AlloSCT candidate?
- Yes
 - AlloSCT
- No
 - HMA, Clinical Trial
How do we improve the results with Aza?

ALLG MDS

The Addition of Lenalidomide to Azacitidine
Achieves Higher Responses But No Improvement In Twelve Month Clinical Benefit or PFS; main analysis of the Australian ALLG MDS4 Trial

Dr Melita Kenealy, on behalf of ALLG investigators (Melbourne, Australia)

13th International Symposium on Myelodysplastic Syndromes
Washington, DC
April 29 - May 2, 2015
Worse outcome with Len+Aza

![Graph showing worse outcome with Len+Aza](image)

ALLG MDS4

High Risk MDS

![Diagram showing high risk MDS](image)

What happens when Aza stops working?

- post aza n=435
- OS 5.6 months
- 2yr survival 15%

Fenaux Lancet Oncol 2009

Prebet JCO 2011

IDH as a therapeutic target

- IDH mutations occur in a spectrum of solid and hematologic tumors
 - IDH1m: ~3% of MDS
 - IDH2m: 3–6% of MDS

IDH inhibitor trials

- **14-035 (NCT02074839):**
 "Phase I multicenter study of AG-120 in patients with IDH1 mutant advanced hematologic malignancies"

- **13-371 (NCT01915498):**
 "Phase I multicenter study of AG-221 in patients with IDH2 mutant advanced hematologic malignancies"
IDH2 inhibitor trial design

Ongoing, first-in-human, dose escalation study:
- AG-221: First-in-class, oral, potent, reversible, selective inhibitor of mutated IDH2
- IDH2 mutation-positive hematologic malignancies, including relapsed or refractory AML, MDS, or untreated AML
- AG-221 in continuous oral dosing QD or BID daily, 28-day cycles

Key outcome measures:
- Safety and tolerability, DLTs
- MTD and recommended phase 2 dose

IDH2i preliminary results

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>CR</th>
<th>CRp</th>
<th>mCR</th>
<th>PR</th>
<th>SD</th>
<th>PD</th>
<th>Disease Not Evaluable</th>
<th>Total (n=45 evaluable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤75</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8/14 (57%)</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11/14 (79%)</td>
</tr>
<tr>
<td>≥150</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>12/22 (55%)</td>
</tr>
</tbody>
</table>

Total: 25/45 (56%)

Why should we care about gene mutations in MDS?

1. **Biology**
 - Mutations give us clues about what went wrong with MDS cells.

2. **Diagnosis**
 - Mutations help us diagnose other bone marrow diseases.
 (e.g., BCR/ABL = CML; JAK2V617F = Polycythemia vera)

3. **Prognosis**
 - Mutations help us predict outcome in other bone marrow diseases.
 (e.g., DNMT3AR882H in acute myeloid leukemia)

4. **Therapy**
 - Mutations help us choose the right drugs in other bone marrow diseases.
 (e.g., BCR/ABL -> imatinib)

Mutations affect prognosis

- **Low Mut (+) vs. (-)**
- **Int-I Mut (+) vs. (-)**
- **Int-II Mut (+) vs. (-)**
- **High Mut (+) vs. (-)**

Mutations in RNA splicing genes

Splicing modulators on the horizon

- Cause splicing abnormalities
- Induce apoptosis in some cell lines in vitro and in vivo
- Bind SF3B complex (including SF3B1)

Lots of genes are mutated in MDS

- ~20 genes consistently mutated in >2% of MDS patients

Mutations without MDS

- ~10% of healthy people age >70

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>No. with Mutation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30</td>
<td>0</td>
<td>240</td>
</tr>
<tr>
<td>30-40</td>
<td>3</td>
<td>855</td>
</tr>
<tr>
<td>40-50</td>
<td>5</td>
<td>2894</td>
</tr>
<tr>
<td>50-60</td>
<td>13</td>
<td>5441</td>
</tr>
<tr>
<td>60-70</td>
<td>18</td>
<td>5002</td>
</tr>
<tr>
<td>70-80</td>
<td>21</td>
<td>2300</td>
</tr>
<tr>
<td>80-90</td>
<td>35</td>
<td>317</td>
</tr>
<tr>
<td>90-100</td>
<td>7</td>
<td>86</td>
</tr>
<tr>
<td>100+</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>

Clonal hematopoiesis of indeterminate potential ("CHIP")

- Elevated risk of MDS/AML
- But, not disease-defining for MDS!

Thanks!