New Directions in Aplastic Anemia: What’s on the Horizon?

Amy E. DeZern, MD; MHS
Assistant Professor
Hematologic Malignancies
Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
Baltimore, MD

Objectives

- To provide information on new concepts emerging in AA in somatic molecular testing
- To review updates on markers of response to therapy in AA
- To review newer data on emerging therapies in aplastic anemia (AA)

Better way to evaluate clonal evolution?

- As survival is improving, we may see more late development of MDS/AML in ≥15% of patients → clonal evolution
- Extrapolation from MDS field → somatic mutational testing
- Goal: to use this testing to ID group of AA pts more likely to get MDS (treatment would be modified)

The Dawn of the Molecular Era of the Myelodysplastic Syndromes

- 51% of patients ≥1 mutation (including ~50% with normal karyotype)
- FIVE genes (in ~30% of pts) → independent prognostic significance and predicted poor overall survival
 - EZH2 ETV6 RUNX1 ASXL1 P53

Genes Recurrently Mutated in MDS

<table>
<thead>
<tr>
<th>Tyrosine Kinase Pathway</th>
<th>Transcription Factors</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAK2 IRB2 RAF BRAF</td>
<td>RUNX2 GATA2 ETV6</td>
<td>TP53 RBP4 NOTCH MAML SF1 SF3 SRFP</td>
</tr>
<tr>
<td>PTPN11 KRAS NRAS BRAF</td>
<td>JAK2 GATA2 ETV6</td>
<td>TP53 RBP4 NOTCH MAML SF1 SF3 SRFP</td>
</tr>
<tr>
<td>SF3B1 SF1 SF3 SF3A SRSF2 DNM 3A TET2 ASXL1 SETBP1 U2AF1 ZRSF2 SETBP1 U2AF2 PRPF8 SRSF2 U2AF2 PRPF8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Epigenetic Dysregulation

- Dekker et al. Blood 2014
- Yoshizato et al. NEJM 2015

Courtesy of Bejar R.
Retrospective from the UK

- From UK: looked at 150 pts with no evidence (by microscope) of MDS
- Screen for mutations
 - ASXL1, DNMT3A, BCOR, TET2, MPL at least
 - 19% AA pts had mutations
 - Pts with mutations had a longer disease duration (37 vs. 8 months, p<0.04)
 - AA patients with disease duration of > 6 mos AND mutation→40% risk of transformation to MDS (p <0.0002)

Candidate gene mutations in acquired aplastic anemia - correlation with survival and clonal evolution to myelodysplastic syndrome

courtesy of Dr. Dumitriu

Yoshizato et al. NEJM 2015

NIH SAA cohort

“Stable AA” – responders or non-responders to immunosuppressive therapy
≈ 15% clonal evolution to MDS/AML

De novo
MDS/AML

Time

Clonal evolution

N = 256 patients (3 institutions)

Yoshizato et al. NEJM 2015

ACQUIRED MUTATIONS IN SAA – NIH COHORT (n=256)

Number mutations per SAA patient

Targeted gene panel

ACQUIRED MUTATIONS IN SAA – STRONG AGE BIAS

All mutations P < 0.001
PIGA & BCOR/BCORL1 P = 0.88
Non.PIGA/BCOR/BCORL1 mutations P < 0.001
ACQUIRED MUTATIONS DO NOT CORRELATE WITH CYTOPENIAS, PRESENCE OF PNH CLONE, OR RESPONSE TO IST

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC<25k/uL</td>
<td>1.09 (0.59, 2.07)</td>
<td>0.885</td>
</tr>
<tr>
<td>ANC<200/uL</td>
<td>1.46 (0.79, 2.68)</td>
<td>0.185</td>
</tr>
<tr>
<td>PNH+</td>
<td>1.46 (0.80, 2.64)</td>
<td>0.202</td>
</tr>
<tr>
<td>Response to IST</td>
<td>1.42 (0.78, 2.62)</td>
<td>0.256</td>
</tr>
</tbody>
</table>

ACQUIRED MUTATIONS DO NOT CORRELATE WITH REFRAC TORY DISEASE

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory to 2 rounds of IST</td>
<td>1.45 (0.49, 4.31)</td>
<td>0.498</td>
</tr>
<tr>
<td>Refractory to 2nd IST given for relapse</td>
<td>0.85 (0.22, 3.15)</td>
<td>0.805</td>
</tr>
<tr>
<td>HSCT (for relapse/refractory/clonal evolution)</td>
<td>0.51 (0.23, 1.10)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

MUTATIONS IN BCOR/BCOL1 CORRELATE WITH BETTER RESPONSE TO IST

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCOR/BCORL1</td>
<td>2.73 (1.05, 7.11)</td>
<td>0.038</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>0.89 (0.31, 2.55)</td>
<td>0.835</td>
</tr>
<tr>
<td>ASXL1</td>
<td>0.68 (0.25, 1.83)</td>
<td>0.447</td>
</tr>
</tbody>
</table>

ACQUIRED MUTATIONS CORRELATE WITH PROGRESSION TO MDS

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCOR/BCORL1</td>
<td>2.73 (1.05, 7.11)</td>
<td>0.038</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>0.89 (0.31, 2.55)</td>
<td>0.835</td>
</tr>
<tr>
<td>ASXL1</td>
<td>0.68 (0.25, 1.83)</td>
<td>0.447</td>
</tr>
</tbody>
</table>

ACQUIRED MUTATIONS CORRELATE WITH OVERALL SURVIVAL

CONCLUSIONS

- Somatic mutations in 35% of cases
- PIGA, DNMT3A, ASXL1, and BCOR/BCORL1 were most frequently mutated genes
- Presence and number of mutations correlated with age only
- BCOR/BCORL1 mutated clones associated with a better chance of responding to IST
- Response to IST, clonal evolution and overall survival are associated with acquired mutations
- Mutations remain independent predictors of clinical outcomes in multivariate analysis
Telomeres

- Telomeres: regions of repetitive nucleotides at the ends of chromosomes that are there to protect the chromosomes from damage and breakdown.
- Telomere length testing very helpful in inherited AA DKC (very short)
- Reports suggest that telomeres are shorter (not very short) in up to one-third of patients with acquired SAA
- At NIH, telomere lengths measured in the white blood cells of 183 patients treated with IST
- Shorter telomeres not found to predict who would have improved blood counts at 6 months after IST
- Shorter lengths may be associated with late effects such as relapse or clonal evolution to MDS

PNH clones and telomeres predict response to IST in Pediatric AA

- Prospective study of 113 children (Ages 0-16)
- All had PNH clones and telomeres done in CLIA certified way before IST
- Response assessed based on PNH clone presence and telomere length
 - If PNH clone + and telomeres “long” ~70% response
 - If PNH clone - and telomeres “short” ~19% response
- Suggestion for upfront HSCT if in this group

Severe Aplastic Anemia 2015 Treatment Paradigm

- Diagnosis of Severe Aplastic Anemia
- Treatment based upon age and donor availability
 - Age < 40 years with HLA matched sibling
 - Age > 40 years OR No HLA matched sib
 - Bone Marrow Transplantation
 - Immunosuppressive Therapy
 - Response Rate ~70%
 - ~40% Relapse or Clonal Evolution
 - Clinical follow up
 - No Response ~30%
 - TRANSPLANT

Alternative Donor transplants in SAA

- Reserve for relapsed or refractory SAA
 - After failing ATG
- Should be done in a “specialist center with major experience in hematopoietic SCT procedures”
- Perform in setting of clinic trial “designed specifically to address the prevention of graft rejection and GVHD”
Unrelated Donor or Alternative donor BMT

- The sooner, the better after relapse/ refractoriness noted
- Bone marrow still the best source
- Similar conditioning regimens
- Often in setting of clinical trial
 - Unrelated donor (NMDP- “MUDs”)
 - Haplo-identical donor (half match)
 - Umbilical cord donor

New Trial

Optimizing Cord Blood and Haploidentical Aplastic Anemia Transplantation (CHAMP)

(Presented on clinicaltrials.gov as CHAMP)

BMT CTN PROTOCOL 1502

Hopkins Haplo BMT for Acquired and inherited SAA

<table>
<thead>
<tr>
<th>Age/ Sex</th>
<th>Pre-BMT Therapy</th>
<th>Degree of HLA match</th>
<th>Day of engraftment (ANC >1000)</th>
<th>Donor chimerism at day 100</th>
<th>cGVHD</th>
<th>cGHVD</th>
<th>Response</th>
<th>Follow-Up (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35M</td>
<td>ATG CsA</td>
<td>5/10</td>
<td>30</td>
<td>100</td>
<td>none</td>
<td>none</td>
<td>CR</td>
<td>56</td>
</tr>
<tr>
<td>52M</td>
<td>ATG CsA</td>
<td>5/10</td>
<td>24</td>
<td>100</td>
<td>none</td>
<td>none</td>
<td>CR</td>
<td>27</td>
</tr>
<tr>
<td>45F</td>
<td>ATG CsA</td>
<td>5/10</td>
<td>27</td>
<td>100</td>
<td>Gr 2 skin</td>
<td>Gr 2 skin</td>
<td>CR</td>
<td>22</td>
</tr>
<tr>
<td>27F</td>
<td>ATG</td>
<td>5/10</td>
<td>24</td>
<td>100</td>
<td>none</td>
<td>none</td>
<td>CR</td>
<td>22</td>
</tr>
<tr>
<td>33M</td>
<td>HCY</td>
<td>5/10</td>
<td>16</td>
<td>100</td>
<td>none</td>
<td>none</td>
<td>CR</td>
<td>17</td>
</tr>
<tr>
<td>17M</td>
<td>HCY</td>
<td>5/10</td>
<td>17</td>
<td>100</td>
<td>none</td>
<td>none</td>
<td>CR</td>
<td>17</td>
</tr>
<tr>
<td>54M</td>
<td>ATG CsA</td>
<td>5/10</td>
<td>15</td>
<td>100</td>
<td>None</td>
<td>CR</td>
<td>CR</td>
<td>9</td>
</tr>
<tr>
<td>26F</td>
<td>CsATPO</td>
<td>5/10</td>
<td>17</td>
<td>100</td>
<td>None</td>
<td>None</td>
<td>CR</td>
<td>6</td>
</tr>
<tr>
<td>59</td>
<td>CsATPO</td>
<td>5/10</td>
<td>24</td>
<td>100 (Day 100)</td>
<td>none</td>
<td>None</td>
<td>CR</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>Steroids</td>
<td>5/10</td>
<td>10</td>
<td>100</td>
<td>none</td>
<td>none</td>
<td>CR</td>
<td>10</td>
</tr>
<tr>
<td>38</td>
<td>Danazol</td>
<td>9/10</td>
<td>17</td>
<td>100</td>
<td>Gr 2 skin</td>
<td>None</td>
<td>CR</td>
<td>20</td>
</tr>
</tbody>
</table>

Mini-BMT for Refractory SAA

Treatment schema

- Survival now >75%
- Similar conditioning regimens- may add TBI

Primary Objective

Assess overall survival in 2 cohorts (unrelated cord blood and haplo-identical) at 1 year post-hematopoietic stem cell transplantation in patients with severe aplastic anemia

Hypothesis—both cohorts >75% 1yr OS

Adult URD
Kaplan-Meier survival rate estimates (and 95% confidence intervals) for recipients of an HLA-matched sibling or unrelated donor HCT for SAA registered with CIBMTR from 1990 through 2011, by donor type, age group, and graft source

<table>
<thead>
<tr>
<th>Survival rate (95% CI), Graft Source: BM and PB</th>
<th>HLA-Matched Sibling Donor</th>
<th>Unrelated Donor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 40y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>84 (82–85)</td>
<td>68 (64–72)</td>
</tr>
<tr>
<td>3 years</td>
<td>80 (78–82)</td>
<td>61 (57–66)</td>
</tr>
<tr>
<td>5 years</td>
<td>77 (73–81)</td>
<td>57 (52–62)</td>
</tr>
<tr>
<td>10 years</td>
<td>77 (73–81)</td>
<td>50 (45–56)</td>
</tr>
<tr>
<td>Survival rate (95% CI), Graft Source: CB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>79 (59–94)</td>
<td>–</td>
</tr>
<tr>
<td>3 years</td>
<td>72 (48–96)</td>
<td>–</td>
</tr>
<tr>
<td>5 years</td>
<td>72 (48–96)</td>
<td>–</td>
</tr>
</tbody>
</table>

* CIBMTR requires a sample size of at least 20 for KM survival-rate estimations.

Umbilicord Transplants

- Survival is still lower ~40%
- Conditioning regimens more varied
 - CY/Flu/TBI
 - Melphalan/Flu/TBI
- Japanese study
 - 12 adult patients, 11/12 engrafted, survival 10/12 median 36 mos

Yamamoto et al, Blood 2011
Peffault et al, BMT 2013
Yoshimi et al, BBMT 2008

URD in children

- 44 children in UK (40 s/p IST)
- Fludarabine, CY, Alemtuzumab

2nd HSCT in AA

- Retrospective of 162 European pts
 - 1998-2009: 1° or 2° in 14% of pts with 1 txp for AA
 - Used same donor 81% of time
 - Changed from BM to PBSC in 56%
 - Excluded 2nd txp using cord blood
 - Graft failure still occurred 26% of 2nd txp
 - Follow up 3.5 years (median) 60% OS

Cassar et al, BMT 2015

ASH 2014: Transplants

- Abstract 256 Dufour et al
- Similar Outcome of Upfront Unrelated and Matched Sibling Donor Hematopoietic Stem Cell Transplantation in Idiopathic Aplastic Anemia of Childhood and Adolescence
- 29 SAA children had unrelated donor HSCT without prior IST in UK
- Compares each with 3 matched controls from the database of the SAAWP of the EBMT with MSD HSCT

Androgens: Danazol

- Suggestion in literature that androgens may slow telomere shortening in some pts
- Phase I/II at NIH in 27 pts (20 with mod AA) to take danazol daily for 2 years
- Increased telomere lengths and hematologic improvement seen
- No significant liver toxicity
- At publication 9 pts stopped drug prior to 2 years

Dumitriu et al, Blood 2014
Iron Overload

- Iron burden increased in patients with AA at presentation and over time with transfusions
 - Follow ferritin (lab measure of body’s iron stores)
- Iron overload in other marrow failure (MDS) studied and problematic
 - Deposition in liver and heart

Iron Chelation

- Deferasirox (Exjade oral) or Desferoxamine (IV)
 - To discuss with doctor as meds have liver and kidney side effects and can lower platelets
- Recent study of 53 AA pts showed deferasirox improves ferritin and liver iron overload when taken daily

THANK YOU!