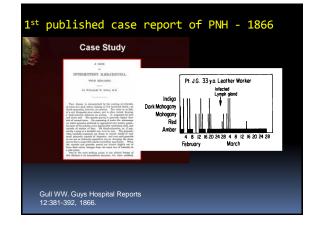

PNH

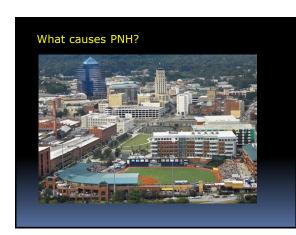
AA-MDS Patient Conference Raleigh / Durham July 2016 PNH: Current Thinking on the Disease, Diagnosis, and Treatment

PNH

- What is PNH?
- What causes PNH?
- What are the clinical symptoms of PNH?
- How is PNH diagnosed?
- What are the long-term risks and complications of PNH?
- How is PNH treated?
- What is new or on the horizon for treatment?

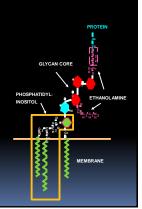
What is PNH?


- Paroxysmal sudden onset
- Nocturnal occuring at night (or early in morning upon awakeneing)
- Hemoglobinuria


Despite the name, the majority of patients do not present this way.

What is PNH?

- A rare and unusual acquired hematologic disorder characterized by
 - Intravascular hemolysis (breaking apart of red cells in the blood vessels)
 - Bone marrow failure (cytopenias= low blood counts)Thrombosis (Blood clots)
- There is an incredible amount of clinical heterogeneity amongst patients with PNH.

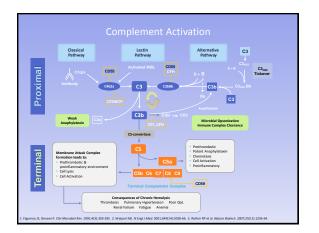


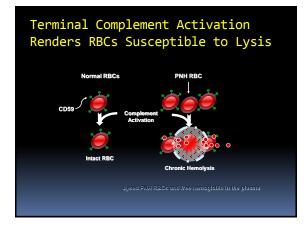
What causes PNH?

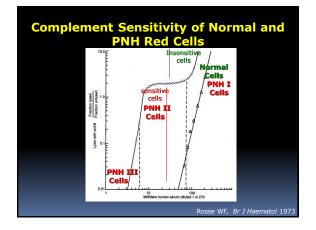
- PNH requires "two-hits"
 - 1) A mutation must occur in a hematopoietic stem cell. Partial or complete deficiency of the GPI anchor
 - 2) PNH is due to a condition that allows this mutated cell to become the dominant cell in the bone marrow.

What causes PNH?

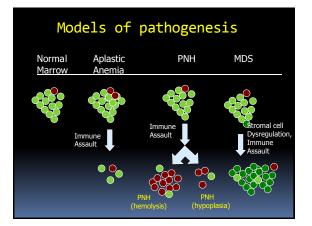
- The mutation in the PIG-A gene in a hematopoietic stem cell leads to a defect in the production of an anchor protein that ties other proteins to the . cell surface.
- Sometimes the mutation leads to a partial decrease in the amount of anchor protein that is made and the cells have a partial deficiency (Type II cells); sometimes the mutation completely knocks out the GPI anchor
- Some patients have more than one stem cells with different mutations in PIG-A gene

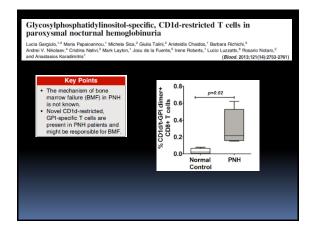


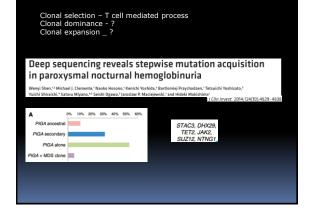

A case of paroxysmal nocturnal hemoglobinuria caused by a germline mutation and a somatic mutation in PIGT veter M. Krawitz, ¹ Britta Höchsmann,² Yoshiko Murakami,³ Britta Teubner,¹ Ulrike Krüger,¹ Eva Klopocki,⁴ leidemanic Neitzel, ¹ Alexander Hoellein,⁶ Orbistina Schneider,⁷ Dmitri Parkhomchuk, ¹ Jochen Hecht,⁶ Peter N. Robinso stefan Mundios, ¹ Tarok Kinschia, ² and Hubert Schreusrmeier² (Blood. 2013;122(7):1312-1315) Key Points · A carrier of a deleterious splice site mutation in *PIGT* acquired a second hit in *PIGT* and developed PNH.

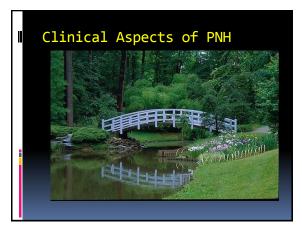

The Missing Proteins in PNH

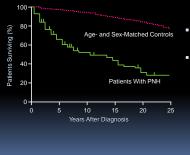

- Complement defense proteins


 CD₅₅ (decay accelerating factor, DAF)
 CD₅₉ (membrane inhibitor of reactive lysis)
- Enzymes
 Acetylcholinesterase
 Alkaline phosphatase
- Immune system ligands
- Adhesion molecules NCAM
- Fibronectin receptor
 Growth Factors and receptors
- Differentiation antigens
 - CD14 (monocytes) CD52 (T cells)
- Anti-procoagulant proteins
 uPAR (CD87)





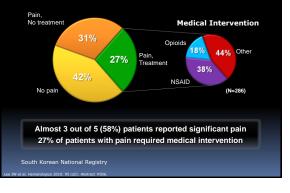


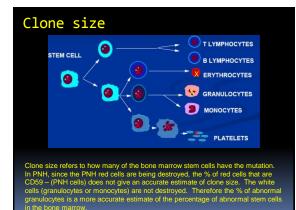


The clinical picture of PNH

- Hemolysis due to complement activation
 - Anemia and fatigue
 - Hemoglobinuria, kidney damage
 Nitric ovide trapping >> Ecophageal charge
 - Nitric oxide trapping >> Esophageal spasm, abdominal pain, pulmonary hypertension, impotence, fatigue?
- Thrombosis Cause of blood clots is still unknown
 Unusual sites of blood clots
- Bone marrow failure
 - Decreased blood counts (cytopenias)

Significant Mortality in PNH

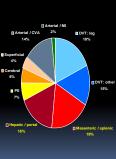

- 5 year mortality: 35%
- Diagnosed at all ages - median time from diagnosis to death: 10-15 yrs


Fatigue in PNH is significant

- Rosse book chapter (Hoffman-Hematology)¹
 - "Many patients note a feeling of fatigue that may be disabling during periods of hemoglobinuria."
 - This is not related to hemoglobin level (anemia), as it disappears when the hemoglobinuria stops."
- Brodsky book chapter (Hoffman-Hematology)²
 - "PNH patients frequently complain of disabling fatigue that is often out of proportion to the degree of anemia."

Inocturnal hemoglobinuria h: R Hoffman; EJ Benz; SJ Shattil et al., eds. *Hematology: Basic Principles and* ew York: Churchill-Livingstone; 200331:342. al nocturnal hemolobinuria. h: R Hoffman: EJ Benz: SJ Shattil et al., eds. *Hematology. Basic Principles and*

Pain is a Common Symptom in PNH Patients


Symptom or complication	PNH Clone				Bone Marrow Disorder		
	<10%	10-49%	>50%	P-value*	Aplastic or Hypoplastic Anemia	No Bone Marrow Disorder	P-value**
TE	5%	5%	22%	<.01	18%	19%	0.89
Abdominal Pain	41%	53%	46%	0.58	48%	47%	0.92
Shortness of breath	49%	44%	53%	0.63	53%	61%	0.23
Chest pain	14%	31%	24%	0.21	31%	27%	0.43
Fatigue	59%	72%	76%	0.15	75%	76%	0.99
Discolore d urine	30%	.56%	75%	<.01	60%	72%	0.05
Chi-square test for d Chi-square test for					gories.		

Incidence of symptoms or complications of PNH

Urbano-Ispizua A, et al. EHA meeting 2010. Haematologica 95(s2): Abstract 1022

What about thrombosis (blood clots) in PNH?

- Blood clots are a presenting sign in 10-20% of patients with PNH.
- Can occur in up to 40% of patients with PNH.
- Occur in unusual locations veins of the liver (Budd-Chiari syndrome), spleen, brain, and skin.
- Associated with a very bad prognosis
- Cause of these blood clots is unknown possibly related to complement activation.

Chronic Renal Insufficiency in PNH

- Associated with hemolysis and/or microvascular thrombosis^{1,2}
- Insidious and progressive chronic renal insufficiency (CRI, GFR <60/ml/min) in up to ~ 30% of patients²
- May be acute renal failure, which is frequently reversible²
- Renal failure reported as cause of death in ~ 8% of US PNH patients³

Diagnosis of PNH

Average delay to diagnosis exceeds 3 years; may be greater than 10 years¹


- PNH continues to be primarily a clinical diagnosis, which can be confirmed by laboratory analyses
 Circuit down and the primary set of the p
- Signs and symptoms are highly variable and may mirror other conditions
 Most common symptoms at presentation are not unique to PNH
- Hemolytic anemia, often requiring transfusions
- Fatigue
- Dyspnea
 - Abdominal pain or dysphagia

¹Hillmen, et al. New Engl J Med. 1995;333:1253-1258. ² Dacie & Lewis. Sem Haemat. 1972;5:3-23.

Flow Cytometry: Diagnostic Test for PNH

- Perform on peripheral blood
- Test both granulocytes and erythrocytes²

 Erythrocytes alone are not sufficient due to hemolysis and the dilution effect of transfusions
- Use monoclonal antibodies against GPI-anchored proteins, such as CD59 or CD55^{1,2}
- PNH blood cells (PNH clone) are cells missing GPIanchored proteins

¹Parker, et al. *Blood.* 2005;106:3699-3709. ²Hall & Rosse. *Blood.* 1996;87:5332-5340.

FLAER binds to the GPI-anchor itself, rather than to a single protein such as CD55 or CD59 FLAER provides much greater signal noise and better accuracy than an antibody against a single target

Fluorescent AERolysin (FLAER)

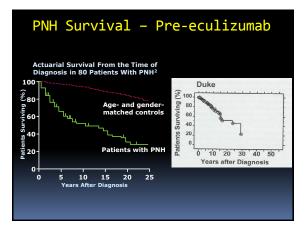
α-CD59 FLAER FLAER FLAER FLAER

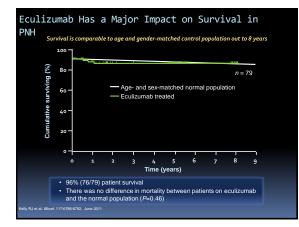
Who Should Be Screened For PNH?

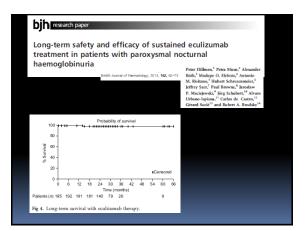
• Patients with:

- Hemoglobinuria¹
- Hemolytic anemia¹
- Bone marrow dysfunction¹
 Aplastic anemia (AA) or MDS screened annually
- Coombs-negative intravascular hemolysis¹
- Elevated serum LDH
 Unusual or unexplained venous thrombosis¹
 Budd-Chiari syndrome
- Mesenteric, portal, cerebral, or dermal veins
- Unexplained arterial thrombosis^{2,3}

LDH=lactate dehydrogenase; MDS=myelodysplastic syndrome.


¹Parker, et al. Blood. 2005;106:3699-3709. ²Hillmen, et al. N Engl J Med. 1995;333-1253-1258. ²Nishimura, et al. Medicine. 2004;83:193-207.




	lo patients d			
ause of death	Duke	Japan		
Thrombosis	16 (42%)	3 (8%)		
Abd site	8	1		
Other site	7	0		
Arterial	3	2		
Hemorrhage	4 (10.5%)	9 (24%)		
Severe Infection	14 (36.5%)	14 (36.8%)		
MDS/AML	3 (8%)	6 (16%)		
Renal failure	3 (8%)	7 (18%)		
Other malignancy	2 (5%)	2 (5%)		
Unknown	2 (5%)	0		

Possible long term effects of Eculizumab

- Improve kidney function
- Prevent pulmonary hypertension
- Increase survival

