AML in Adults

Guru Subramanian Guru Murthy MD
Assistant professor, Hematology/Oncology
Medical College of Wisconsin
Background

- Clonal expansion of myeloid blasts in the blood/bone marrow

- A malignancy that affects blood, bone marrow and other tissues
Epidemiology

- About 21450 new cases in 2019 and 10920 deaths
- Median age at diagnosis 67 years
- 54% diagnosed are over 65 years

https://seer.cancer.gov
Etiology and types of AML

Primary AML
Causative factors are unclear with possible links to petrochemicals, benzene, pesticides and ionizing radiation

Secondary AML
Evolves from prior disorders such as MDS, MPN, CMML

Therapy related AML
Prior cancer treatment with chemotherapy or radiation

Acute promyelocytic leukemia is a distinct subtype
How does AML start?

- Series of genetic and molecular events occur in hematopoietic precursor cells
- Most patients have 3 or more somatic alterations with > 100 genomic lesions
- Unclear how much time is needed to acquire these events and progress
- Older patients tend to have more bad mutations
- Age related clonal hematopoiesis

Kronke J et al. Blood 2013
Ley et al. NEJM 2013
What happens in APL?

Clinical presentation

- Bleeding tendencies in APL
- Gum enlargement in certain subtypes of AML
Workup

• Complete blood count
• Peripheral blood smear review
• Bone marrow biopsy
• Cytogenetics/FISH
• Flow cytometry
• Molecular markers

• Electrolytes, liver function test, renal function test
• ECHO or MUGA scan
Chromosomal and molecular abnormalities in clinical context

European LeukemiaNet Risk Stratification by Genetics in Non-APL AML

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Genetic Abnormality</th>
</tr>
</thead>
</table>
| Favorable | t(8;21)(q22;q22.1); RUNX1-RUNX1T1
 | inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
 | Mutated NPM1 without FLT3-ITD or with FLT3-ITD^a
 | Biallelic mutated CEBPA |
| Intermediate | Mutated NPM1 and FLT3-ITD^a
 | Wild-type NPM1 without FLT3-ITD or with FLT3-ITD^a (without adverse-risk genetic lesions)
 | t(9;11)(p21.3;q23.3); MLLT3-KMT2A
 | Cytogenetic abnormalities not classified as favorable or adverse |
| Poor/Adverse | t(6;9)(p23;q34.1); DEK-NUP214
 | t(v;11q23.3); KMT2A rearranged
 | t(9;22)(q34.1;q11.2); BCR-ABL1
 | inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)
 | -5 or del(5q); -7; -17/abn(17p)
 | Complex karyotype,§ monosomal karyotype||
 | Wild-type NPM1 and FLT3-ITD^{high}
 | Mutated RUNX1††
 | Mutated ASXL1 ††
 | Mutated 7p53# |
Phases of therapy

- **Induction**
 - Chemotherapy

- **Post remission**
 - Chemotherapy or Allogeneic BMT

Leukemia no longer detectable with tests.
Types of AML – Treatment standpoint

- Newly diagnosed
- Relapsed/refractory
Frontline Therapy decision making

Intensive therapy
Involves combination chemotherapy

Less intensive therapy
Involves agents such as HMA, venetoclax, IDH1 inhibitors, gemtuzumab
Assessment of fitness to therapy

General
- Karnofsky performance scale
- ECOG performance scale
- Comprehensive geriatric assessment

Comorbidities
- Charlson comorbidity index
- HCT-CI (Sorror)

Composite
- NCCN
- SWOG/MDACC
- MRC/NCRI
- Sorror AML model
- German SAL score
Timeline of AML therapy approval

Abdel-Wahab O. The Hematologist. 2018;15; DAURISMO® PI 2018; RYDAPT® PI 2018; IDHIFA® PI 2017; VYEXOS® PI 2017; MYLOTARG® PI 2018; TIBSOVO® PI 2018; XOSPATA® PI 2018.
INTENSIVE
7+3 regimen

- 7 days of cytarabine IV
- 3 days of daunorubicin or idarubicin IV
- Typically hospitalized for 3-4 weeks
- Risk of infection, bleeding, and other complications
- Induces CR in 70-80% of denovo AML
Gemtuzumab Ozogamicin

- CD33-directed antibody-drug conjugate
- Withdrawn in 2010 – hepatotoxicity with 9mg/m2 dose
- Subsequently proven to have benefits in AML when given in reduced doses
- Newly-diagnosed CD33-positive AML in certain risk groups
- Risk of veno-occlusive disease

Castaigne et al. Lancet 2012
Hills RK et al. Lancet Oncol 2014
Midostaurin

- FLT3 inhibitor
- Newly diagnosed AML with FLT3 mutation (ITD or TKD)
- Tested with daunorubicin 60mg/m2 and cytarabine 200mg/m2 (7+3)
- 50mg BID oral from days 8-21
- Bone marrow day 21
- Continued during consolidation and maintenance
- Side-effects: nausea, skin rash, GI upset

Stone RM et al. NEJM 2017

4-year OS - 51 vs 44%
22% lower risk of death
CPX-351

- Liposomal carrier
- 5:1 molar ratio of cytarabine to daunorubicin
- Approved for newly diagnosed therapy-related AML or AML with myelodysplasia-related changes (AML-MRC)
- Given IV on days 1, 3, 5
- Can be given as outpatient

Lancet JE et al. JCO 2018
LESS INTENSIVE
Hypomethylating Agents (HMA)

- Includes azacitidine and decitabine
- Modest effectiveness as single agent in newly diagnosed AML
- CR rate of 17-20%
- Decitabine - Median OS 7.7 mon
- Azacitidine: Median OS 10.4 mon

Kantrajian et al. JCO 2012
Dombert et al. Blood 2015
Venetoclax with HMA or cytarabine

- BCL2 inhibitor
- Effective when combined with HMA or cytarabine
- Taken orally once a day along with HMA or cytarabine
- CR 54-70%
- Side-effects are minimal, typically low blood counts, risk of tumor lysis syndrome
Glasdegib

- Hedgehog pathway inhibitor
- Oral 100mg daily along with cytarabine 20mg daily x 10 days every 28 days
- CR 17%, OS 8.8 mon
- SE – low blood counts, nausea, fatigue

Cortes J et al. Leukemia 2018
IDH inhibitors
- Inhibits IDH2, a mutation seen in 12% of AML
- Approved as single agent, 100mg daily, oral
- Response rates 40%, CR 19%
- Responses increase with time
- Can cause increase in WBC, differentiation syndrome, elevated bilirubin

Stein E et al. Blood 2018
Ivosidenib

- Inhibits IDH1, a mutation seen in 10% of AML
- Approved as single agent, 100mg daily, oral
- Response rates 40%, CR 20%
- Responses increase with time
- Can cause increase in WBC, differentiation syndrome

DiNardo et al. NEJM 2018
Changing landscape of frontline therapy

- 7+3 or similar regimen
- Decitabine or azacitidine
- Subcutaneous cytarabine

Intense

7+3
7+3+mylotorg
7+3+midostaurin
CPX-351

Less intense

- Venetoclax + Azacitidine or decitabine
- Venetoclax + cytarabine
- Glasdegib + cytarabine
- IDH1/2 inhibitors
Relapsed-Refractory AML

THERAPY FOR RELAPSED/REFRACTORY DISEASE

Clinical trial
Aggressive therapy for appropriate patients:
- Cladribine + cytarabine + granulocyte colony-stimulating factor (G-CSF) ± mitoxantrone or idarubicin
- HiDAC (if not received previously in treatment) ± (idarubicin or daunorubicin or mitoxantrone)
- Fludarabine + cytarabine + G-CSF ± idarubicin
- Etoposide + cytarabine ± mitoxantrone
- Clofarabine ± cytarabine + G-CSF ± idarubicin

Less aggressive therapy:
- Hypomethylating agents (azacitidine or decitabine)
- Low-dose cytarabine (category 2B)

Therapy for AML with FLT3 mutation
- Gilteritinib
- Hypomethylating agents (azacitidine or decitabine) + sorafenib (FLT3-ITD mutation)

Therapy for AML with IDH2 mutation
- Enasidenib

Therapy for AML with IDH1 mutation
- Ivosidenib

Therapy for CD33-positive AML
- Gemtuzumab ozogamicin

NCCN Guidelines for AML, 2019
Allogeneic transplant

Infections

GVHD

Disease relapse
Allogeneic stem cell transplant

- Curative option
- Outcomes are best when done in first CR
- Indicated for poor risk AML and certain groups of intermediate risk AML
- Risk of early and late transplant related complications
- Risk of relapse
APL therapy

• High cure rates – over 90% in clinical trials, and >60-70% in population based studies

• ATRA (oral) and Arsenic (IV) are effective treatments and chemotherapy free

• Risk of early mortality due to bleeding complications and infections

Burnett AK et al. Lancet Oncol 2015
Where we stand..

At a Glance

- Estimated New Cases in 2019: 21,450
- Estimated Deaths in 2019: 10,920
- % of All New Cancer Cases: 1.2%
- % of All Cancer Deaths: 1.8%
- Percent Surviving 5 Years: 28.3%

https://seer.cancer.gov
<table>
<thead>
<tr>
<th>Clinical Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Trial to Evaluate the Potential Impact of Renal Impairment on the Pharmacokinetics and Safety of CPX-351</td>
</tr>
<tr>
<td>Lintuzumab-Ac225 in Combination With CLAG-M Chemotherapy in Patients With Relapsed/Refractory Acute Myeloid Leukemia</td>
</tr>
<tr>
<td>Pracinostat in Combination With Gemtuzumab Ozogamicin (PraGO) in Patients With Relapsed/Refractory Acute Myeloid Leukemia</td>
</tr>
<tr>
<td>Safety, Tolerability, Pharmacokinetics and Efficacy of AMG 397 in Subjects With Multiple Myeloma, NHL, and AML</td>
</tr>
<tr>
<td>A Study of the Safety and Tolerability of ABBV-621 in Participants With Previously Treated Solid Tumors and Hematologic Malignancies</td>
</tr>
<tr>
<td>Safety, Tolerability, Pharmacokinetics, and Efficacy of AZD2811 Nanoparticles as Monotherapy or in Combination in Acute Myeloid Leukemia Patients</td>
</tr>
<tr>
<td>Safety Study of MGD006 in Relapsed/Refractory Acute Myeloid Leukemia (AML) or Intermediate-2/High Risk MDS</td>
</tr>
<tr>
<td>Study of Iomab-B Prior to Hematopoietic Cell Transplant vs. Conventional Care in Older Subjects With Active, Relapsed or Refractory Acute Myeloid Leukemia</td>
</tr>
<tr>
<td>A Phase Ib/II, Multicenter, Single Arm, Open-Label Study, To Evaluate the Safety, Tolerability and Efficacy of the BL-8040 and Atezolizumab Combination for Maintenance Treatment in Subjects With Acute Myeloid Leukemia Who Are 60 Years or Older</td>
</tr>
<tr>
<td>Efficacy and Pharmacogenomics of Salvage CLAG-M Chemotherapy in Patients With Relapse/Refractory and Secondary Acute Myeloid Leukemia</td>
</tr>
</tbody>
</table>
QUESTIONS ?