Low Risk Myelodysplastic Syndromes (MDS)

Tiffany Tanaka, MD
UC San Diego Moores Cancer Center
Diagnosis
Bone Marrow Biopsy

cancer.gov (National Cancer Institute website)
Diagnoses that look like MDS (but aren’t!)

Benign Causes
- Medications
- HIV
- EBV
- Hep B/C
- Autoimmune Disorders
- Hepatic or Renal Disease
- Alcohol Abuse
- Vitamin Deficiencies
- Copper Deficiency
- Iron Deficiency

Non-Benign (“Clonal”) Causes
- Immune Injury
- CMML
- JMML
- aCML
- MDS/MPN-RS-T
- MDS/MPN-U
- AA
- PNH
- hMDS
- Inherited BMF
- CCUS
- CHIP
- sAML
- AML-MRC
- SM-AHN
- MPN
- SM
- Abnormal Proliferation

Bejar, Curr Hematol Malig Rep 2015
Tanaka, Bejar, Blood 2019
How MDS affects patients

• Low blood counts
• Increased bleeding, infection, anemia
• One-third of patients develop acute myeloid leukemia (AML)

Changes in Cell Shape

<table>
<thead>
<tr>
<th>Pseudo-Pelger anomaly</th>
<th>Ring sideroblasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple separated nuclei</td>
<td>Myeloblasts</td>
</tr>
</tbody>
</table>

Chromosome Changes

- 50% of patients

DNA Changes (mutations)

- 90% of patients

Cazzola et al, *Blood* 2013

ASH Image Bank – James Vardiman
MDS subtypes (based on bone marrow)

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Blood</th>
<th>Bone Marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS with single lineage dysplasia (MDS-SLD)(^c)</td>
<td>Single or bicytopenia</td>
<td>Dysplasia in ≥10% of one cell line, <5% blasts(^d,2)</td>
</tr>
<tr>
<td>MDS with ring sideroblasts (MDS-RS)</td>
<td>Anemia, no blasts</td>
<td>≥15% of erythroid precursors w/ ring sideroblasts, or ≥5% ring sideroblasts if SF3B1 mutation present</td>
</tr>
<tr>
<td>MDS with multilineage dysplasia (MDS-MLD)</td>
<td>Cytopenia(s), <1 x 10^9/L monocytes</td>
<td>Dysplasia in ≥20% of cells in ≥2 hematopoietic lineages, <15% ring sideroblasts (or <5% ring sideroblasts if SF3B1 mutation present)</td>
</tr>
</tbody>
</table>

MDS patients have “dysplasia” in greater than 10% of bone marrow cells, and less than 20% blasts (leukemia cells)

MDS, unclassifiable (MDS-U)	Cytopenias, ±1% blasts on at least 2 occasions	Unilineage dysplasia or no dysplasia but characteristic MDS cytogenetics, <5% blasts
MDS with isolated del(5q)	Anemia, platelets normal or increased	Unilineage erythroid dysplasia, isolated del(5q), <5% blasts ± one other abnormality except -7/del(7q)
Refractory cytopenia of childhood (Provisional WHO category)	Cytopenias, <2% blasts	Dysplasia in 1–3 lineages, <5% blasts

What is my MDS stage?
International Prognostic Scoring System, Revised (IPSS-R)

1. Hemoglobin
 Red Blood Cells
2. Absolute Neutrophil Count
 Type of White Blood Cell
3. Platelet Count
 Clotting Cells
4. Bone Marrow Blasts
 Leukemia Cells
5. Chromosome Abnormalities

• Very Low Risk
• Low Risk
• Intermediate Risk
• High Risk
• Very High Risk
Example Patient

Margie is a 78-year-old woman with:

- **Hemoglobin**: 8.2 g/dL
- **Neutrophils**: 2.3 x 10⁹/L
- **Platelet**: 240 x 10⁹/L

Bone marrow biopsy shows:

- **Blasts**: 1%
- **Chromosomes**: Normal

The lower the score, the better!
Lower Risk = Better Survival

Genetic Variation of MDS

Haferlach et al, *Leukemia* 2014
Genes Mutations in MDS

<table>
<thead>
<tr>
<th>Mutated Gene</th>
<th>Examples of Typical Somatic Mutation Types and Locations in Select MDS-Related Genes</th>
<th>Overall Incidence</th>
<th>Clinical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>TET2</td>
<td>Nonsense or Frameshift or Splice Site</td>
<td>20%–25%</td>
<td>Associated with normal karyotypes. More frequent in CMML (40%–60%). Common in Clonal hematopoiesis of indeterminate potential (CHIP) and Clonal cytopenia of undetermined significance (CCUS).</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>Nonsense or Frameshift or Splice Site</td>
<td>12%–18%</td>
<td>More frequent occurrence in AML, particularly R882 mutations. Common in CHIP and CCUS.</td>
</tr>
<tr>
<td>ASXL1</td>
<td>Nonsense or Frameshift</td>
<td>15%–25%</td>
<td>Independently associated with a poor prognosis in MDS and CMML. More frequent in CMML (40%–50%). Common in CHIP and CCUS.</td>
</tr>
<tr>
<td>EZH2</td>
<td>Nonsense or Frameshift</td>
<td>5%–10%</td>
<td>Independently associated with a poor prognosis in MDS and MDS/MPN. More frequent in CMML (12%).</td>
</tr>
<tr>
<td>SFB3B</td>
<td>Missense: E662, Y802, R626, N626, H662, T663, K668, R706, H704, G740, G742, D781</td>
<td>20%–30%</td>
<td>Strongly associated with ring sideroblasts and more frequent in MDS-RS (80%). Independently associated with a more favorable prognosis.</td>
</tr>
<tr>
<td>SRSF2</td>
<td>Missense or In-Frame Deletion involving codon P65</td>
<td>10%–15%</td>
<td>More frequent in CMML (40%) and associated with a poor prognosis.</td>
</tr>
</tbody>
</table>

Gene mutations may aid the diagnosis of MDS, and may also predict survival

<table>
<thead>
<tr>
<th>Mutated Gene</th>
<th>Examples of Typical Somatic Mutation Types and Locations in Select MDS-Related Genes</th>
<th>Overall Incidence</th>
<th>Clinical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPL</td>
<td>Missense: W515L/K</td>
<td><5%</td>
<td>Observed in MDS/MPN-RS&T where it can occur in conjunction with SFB3B mutations.</td>
</tr>
<tr>
<td>ETV6</td>
<td>Nonsense or Frameshift</td>
<td><5%</td>
<td>Independently associated with a poor prognosis.</td>
</tr>
<tr>
<td>GATA2</td>
<td>Nonsense or Frameshift or Splice Site</td>
<td>Missense in codons 349–356</td>
<td>Associated with a poor prognosis.</td>
</tr>
<tr>
<td>DOX41D</td>
<td>Nonsense or Frameshift or Splice Site</td>
<td>Missense in codon R526H</td>
<td>Constitutional (germline) mutations in this gene can occur.</td>
</tr>
<tr>
<td>IDH1</td>
<td>Missense: R132</td>
<td><5%</td>
<td>More frequent in AML.</td>
</tr>
<tr>
<td>IDH2</td>
<td>Missense: R1400, R172</td>
<td><5%</td>
<td>More frequent in AML. Associated with a poor prognosis.</td>
</tr>
<tr>
<td>SETBP1</td>
<td>Missense: E865, T864, L865, D868, S869, G870</td>
<td><5%</td>
<td>Associated with disease progression. More frequent in CMML (5%–10%) and JMML (7%).</td>
</tr>
<tr>
<td>PTPN1</td>
<td>Nonsense or Frameshift or Splice Site</td>
<td><5%</td>
<td>More frequent in cases with excess blasts, but no association with survival.</td>
</tr>
<tr>
<td>BCR</td>
<td>Nonsense or Frameshift or Splice Site</td>
<td><5%</td>
<td>Associated with a poor prognosis. More frequent in CMML (5%–10%).</td>
</tr>
<tr>
<td>FLT3</td>
<td>Internal Tandem Duplication or Missense: in codon D835</td>
<td></td>
<td>Associated with a poor prognosis.</td>
</tr>
<tr>
<td>WTI</td>
<td>Nonsense or Frameshift or Splice Site</td>
<td></td>
<td>Associated with a poor prognosis.</td>
</tr>
<tr>
<td>NPM1</td>
<td>Frameshift: W286fs*12</td>
<td></td>
<td>Associated with a poor prognosis.</td>
</tr>
<tr>
<td>STAT3</td>
<td>Missense: any codons 564–674</td>
<td><5%</td>
<td>Occurs in large granular lymphocyte leukemia (LGL) associated with MDS; associated with immune bone marrow failure.</td>
</tr>
<tr>
<td>PPM1D</td>
<td>Nonsense or Frameshift</td>
<td>~5%</td>
<td>Associated with therapy-related MDS, but not associated with adverse prognosis independent of TP53. Common in CHIP and CCUS.</td>
</tr>
</tbody>
</table>
Treatment
General Approach

- **Priorities in low-risk MDS**
 1. Improvement of cytopenia(s)
 2. Less transfusions
 3. Less iron overload
 4. Tolerability of a given treatment
 5. Quality of life
 6. Delay disease progression
 7. Improve survival
 8. Cure

- **Priorities in high-risk MDS**
 1. Delay disease progression
 2. Improve survival
 3. Cure
 4. Reduction of disease burden
 5. Improvement of cytopenia(s)
 6. Less transfusions
 7. Tolerability of a given treatment
 8. Quality of life

Platzbecker et al, *Blood* 2019
Treatments for Low Risk MDS

- Close Monitoring
- Supportive Treatment: Blood transfusions, Iron chelation
- Erythropoiesis stimulating agents (ESA)
- Lenalidomide for del(5q)
- Luspatercept for MDS-RS Subtype
- Hypomethylating Agents (Azacitidine, Decitabine) might be considered
- Immunosuppressive Therapy (ATG, Cyclosporine) in select situations
Treating Anemia

- **Anemia Only**
 - **Mild**: Observe
 - **Moderate/Severe**
 - Del(5q) Only: Lenalidomide
 - No Del(5q), Check Epo Level
 - Less than 500: Epo (ESA)
 - 500 or more: Luspatercept
 - If no improvement, Luspatercept
Erythropoiesis-Stimulating Agents (ESA)

- Epoetin Alfa or Darbepoietin
- Stimulate red blood cell production
- Subcutaneous injections every 1-2 weeks
- Side effects: headache, joint pain, high blood pressure, thrombosis (rare)

Patients with Epo level below 200 have better responses that last longer

Fenaux et al. *Leukemia* 2018
Lenalidomide

- Lower-risk MDS with del(5q)
- Oral (pill)
- 70% of patients no longer require transfusions
- 50% of patients experience “cytogenetic response,” where the del(5q) abnormality is no longer found
- Side effects: Low blood counts, nausea, diarrhea, fatigue, itching
Luspatercept

- Lower-risk MDS with ring sideroblasts (MDS-RS)
- No response to ESA or Epo level above 500
- Subcutaneous injection every 3 weeks
- 38% of patients no longer required transfusions after 6 months
- Side effects: Low back pain, fatigue, nausea, diarrhea, dizziness

Acceleron Pharma
More than anemia?

Thrombocytopenia, Neutropenia, or Bone marrow blasts

- Supportive Treatments
- Hypomethylating Agents (Azacitidine, Decitabine)
- Immunosuppressive Therapy

If favorable response, continue until progression
No response: Clinical trial or bone marrow transplant
Hypomethylating (HMA) Therapy

- Azacitidine, Decitabine
- IV, SQ (*oral decitabine-cedazuridine)
- Blood counts initially worsen, more transfusions needed
- Slow responses in most (4-6 months)
- Treatment schedule
 - Azacitidine day 1-7, every 28 days
 - Decitabine day 1-5, every 28 days
- Side effects: nausea, constipation, worsened blood counts

Fenaux et al. *Lancet Oncol* 2009
THANK YOU!

AAMDS International Foundation
Neil Horikoshi
Alice Houk and Leigh Clark

UCSD BMT & Hematology Clinical Teams
Rafael Bejar MD PhD
Soo Park MD

UCSD Research Team
Randy Tsai
Xinlian Zhang PhD
Brian Reilly PhD
Dinh Diep PhD

OUR PATIENTS!

UCSD ACTRI KL2: 1KL2TR001444