Targeting the TGF-β superfamily in Myelodysplastic Syndromes (MDS)

Amit Verma

Albert Einstein College of Medicine
Bronx, NY
Reduced Survival Is an Inherent Feature of MDS: Even for low risk subgroups

Life expectancy is shorter for US patients with MDS than those with lung cancer*†[1,2]

Need for therapeutic approaches that increase blood counts

*Adjusted for age (lung cancer, median 66 yrs; MDS, median 69 yrs) and risk/stage.[1,2]
†All histological subtypes.[1,2]

Ineffective Hematopoiesis is seen in MDS

Hypercellular marrows with decreased peripheral blood counts

↑ Increased Cell death (Apoptosis/Cell cycle arrest)
Decreased Proliferation / Differentiation

↑ Pro Apoptotic / Myelosuppresive/
Inflammatory cytokine signaling

Tumor necrosis factor α
- ↑ TNFα mRNA in MDS BMs
- ↑ TNF production by MDS Macrophages

Pro-apoptotic Type 1 receptors increased in low grade MDS and decreased in high grade cases and AML

Anti-TNF therapies (Remicaid & Enbrel) show efficacy

Thalidomide can degrade TNF mRNA

Transforming growth factor β
- ↑ membrane bound TGF β on progenitors
- ↑ conc. in serum

Vascular Endothelial growth factor (VEGF)
Secreted by malignant clone and ALIP cells
Expression in BM correlates with disease severity
Higher expression of high affinity VEGFR1

Other TGF-β family members
GDF11, GDF15

Interferon γ (IFN γ)
Interleukin 1β
Fibroblast Growth factor (FGF)
Hepatocyte growth factor (HGF)
Macrophage Inhibitory Protein (MIPα)
TGF-beta family members regulate hematopoiesis

Activin receptor ligands, GDFs

TGF-β

Transphosphorylated TβR complex

ALK4

ALK5

SMAD2

SMAD3

SMAD4

Phosphorylated SMAD2/3 complex

TIF γ

Stem cell proliferation and quiescence

Altered erythroid differentiation

SMAD6/7

ALK, activin-like kinase receptor; GDF, growth differentiation factor; TGF-β, transforming growth factor β.
Activated SMAD2/3 seen in MDS BM samples

BM, bone marrow; IHC, immunohistochemistry.

Inhibition of SMAD2 activation can stimulate MDS hematopoiesis in vitro

Table: Colonies

<table>
<thead>
<tr>
<th></th>
<th>Scr shRNA</th>
<th>anti-TBRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS 1 BFU-E</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>MDS 1 CFU-GM</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>MDS 2 BFU-E</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>MDS 2 CFU-GM</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MDS 3 BFU-E</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>MDS 3 CFU-GM</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>MDS 4 BFU-E</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>MDS 4 CFU-GM</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>MDS 5 BFU-E</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>MDS 5 CFU-GM</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>MEAN</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>

P = 0.007

Alb/TGF+ transgenic mice develop anemia and mimic human bone marrow failure

- Megakaryocytes
- Erythroid progenitors

Figure A

- Alb/TGF+ 8wks old
- H&E Staining
- WT 8wks old

- Reticulin staining

- Fibrosis
Small molecule inhibitor of ALK5 (TGF-b receptor I), SD-208, can improve hematopoiesis in TGF overexpressing mice and can raise their hematocrit.

Why is SMAD2/3 signaling activated in MDS?

Negative regulator Smad7 is reduced

- **Controls** (N = 17)
- RA (N = 55)
- RARS (N = 48)
- RAEB (N = 80)
- 5q− (N = 16)

Log 2 (SMAD7 gene expression)

- Controls
- RA
- RARS
- RAEB
- 5q−

Log 2 (SMAD2 gene expression)

- Controls
- RA
- RARS
- RAEB
- 5q−

Lowest expression

SMAD2

SMAD7

RA, refractory anemia; RAEB; RA with excess blasts; RARS, RA with ringed sideroblasts.

SMAD7 is a negative regulator of ALK4 and ALK5

ALK, activin-like kinase receptor; GDF, growth differentiation factor; TGF-β, transforming growth factor β.

Inhibition of proliferation

Altered erythroid differentiation

SMAD7

ALK4

ALK5

SMAD2

SMAD3

SMAD4

SMAD6/7

TGF-β

Transphosphorylated TβR complex (ALK5)

Activin receptor ligands, GDFs

Phosphorylated SMAD2/3 complex

Inhibition of proliferation

Altered erythroid differentiation

ALK, activin-like kinase receptor; GDF, growth differentiation factor; TGF-β, transforming growth factor β.
SMAD7 is reduced in MDS

- **SMAD7 IHC**
- **Controls** vs. **MDS**
- Staining for SMAD7 (%)
 - **Strong staining**
 - **Weak or no staining**

Reduced SMAD7 leads to increased sensitivity to TGF-β

....That can be reversed by inhibition of TGF-b receptor kinase
Why is SMAD7 decreased in MDS?

miR-21 is increased in MDS and has a putative binding site on the SMAD7 3' UTR

Gene

Human SMAD7 SNM_005904 3’ UTR Length: 1518

Conserved sites for miRNA families conserved in human, mouse, rat, dog, and chicken

- miR-15/16/195/424/497
- miR-21
- miR-216
- miR-25/32/92/363/367
- miR-17-5p/20/93.mr/10
- miR-181

Key

- Sites conserved in human, mouse, rat, dog, and chicken
- Less conserved sites

Human SMAD7 3’ UTR

Mean intensity

<table>
<thead>
<tr>
<th>miR-21 (Log 2)</th>
<th>Controls</th>
<th>MDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Normalized miR-21 expression

<table>
<thead>
<tr>
<th>miR-21 expression</th>
<th>Control</th>
<th>All MDS</th>
<th>LR MDS</th>
<th>HR MDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

HR MDS, high-risk MDS; **LR MDS**, low-risk MDS; miR-21, microribonucleic acid 21; UTR, untranslated region.

Parallel Transcriptional Analysis reveals miR-21 overexpression in MDS/AML Stem and Progenitor cells

Barreyro et al. Blood 2012
miR-21 binds to SMAD7 3’UTR and leads to reduced levels of SMAD7

A

5’ ...UGUUUAGAAUUUAACAUAGCUA... Wild-type mouse Smad7 3’UTR

3’ AGUUGUAGUCAGACUAUUCGAU miR-21

5’ UGUUUAGAAUUUAACAUAGAU CGA mutat mouse Smad7 3’UTR

B

Fold Change (mir21/control)

WT Smad7 UTR Mut Smad7 UTR

**
Inhibition of miR-21 can abrogate the effects of TGF–β on hematopoietic cells

Bhagat et al, Blood, 2013
Treatment with mir21 inhibitor leads to increase in red blood cells in TGF transgenic mice:

Inhibition of miR-21 stimulates erythropoiesis in MDS.
LY-2157299 (Galunisertib) is an oral ALK5 inhibitor

LY-215 is effective in vitro and in vivo in MDS

A Study of LY2157299 in Participants With Low/Int-1 Myelodysplastic Syndromes; ClinicalTrials.gov Identifier: NCT02008318

TGF transgenic mice treated for 2 weeks

Phase 2 Study of Monotherapy Galunisertib (LY2157299 Monohydrate) in Very Low-, Low-, and Intermediate-risk Patients with Myelodysplastic Syndromes

David Valcarcel¹, Amit Verma², Uwe Platzbecker³, Valeria Santini⁴, Aristoteles Giagounidis⁵, Maria Diez-Campelo⁶, Jan Janssen⁷, Richard F Schlenk⁸, Gianluca Gaidano⁹, Jaime Perez de Oteyza¹⁰, Ann L Cleverly¹¹, Alan Y Chiang¹², Michael M Lahn¹², Durisala Desaiah¹², Susan C Guba¹², Alan List¹³, Rami Komrokji¹³

¹Hematology, Vall d'Hebrón University Hospital, Vall d'Hebrón, Barcelona, Spain; ²Department of Medicine, Albert Einstein Cancer Center, Bronx, NY, USA; ³Universitätsklinikum Carl Gustav Carus an der Technischen Universität, Dresden, Germany; ⁴AOU Careggi, University of Florence, Florence, Italy; ⁵Hematology, Oncology and Palliative Care, Marien Hospital, Düsseldorf, Germany; ⁶Hospital Clinico De Salamanca, Salamanca, Spain; ⁷Onkologische Gemeinschaftspraxis Dres Westerstede, Germany; ⁸Internal Medicine, University of Ulm, Ulm, Germany; ⁹Hematology, Department of Translational Medicine, Amedeo Avogadro Novara, Italy; ¹⁰Hematology, Hospital HM Sanchinarro, Madrid, Spain; ¹¹Eli Lilly and Company, Erl Wood, ELCL, UK; ¹²Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA; ¹³H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA

57th American Society of Hematology Annual Meeting; December 5-8, 2015; Orlando, Fl., USA
Hematological Improvement in Patients Treated with Galunisertib, 150 mg BID

<table>
<thead>
<tr>
<th>Baseline Transfusion Need</th>
<th>Number of Patients (N)</th>
<th>Median number of transfused units at baseline</th>
<th>Post Treatment (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TI During any 8 Weeks</td>
</tr>
<tr>
<td>≥ 4 Units</td>
<td>24</td>
<td>7.5</td>
<td>4</td>
</tr>
<tr>
<td>1-3 Units</td>
<td>4</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>0 Units</td>
<td>10</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*14 patients could not decrease their transfusion requirement by 4 units/8 weeks per IWG 2006 criteria. If only the ≥4 units at baseline patients are included, then the response rate is 9/24 or 37.5%

TI, transfusion independence; HI, hematological improvement; TR, transfusion reduction; HGB, hemoglobin
Heatmap of Biomarkers vs. Response Demonstrated no Correlation with mutations
Stem Cell Differentiation Block (CD34+CD38-Lin-CD33-) is associated with response to TGF-β inhibitor.
Response to TGF-β inhibition associated with increased progenitor differentiation

Pre-treatment

Viable, single cells
Lin-CD33- cells
CD123-CD45Rα- cells
CD34+CD38+ cells

Increased %age of CD34+/CD38+ progenitors
Decreased %age of Aberrant (IL1RAP) HSCs

Cycle 6

Viable, single cells
Lin-CD33- cells
CD123-CD45Rα- cells
CD34+CD38+ cells

Increased %age of CD34+/CD38+ progenitors
Decreased %age of Aberrant (IL1RAP) HSCs
Sotatercept and Luspatercept (ACE-536) act as novel ligand traps for TGF-β superfamily ligands.

Sotatercept (ACE-011)
- Extracellular domain of ActRIIA
- Fc domain of human IgG₁ antibody

Luspatercept
- Modified extracellular domain of ActRIIB
- Fc domain of human IgG₁ antibody

Amino acid homology between ECD of sotatercept and ACE-536 is ~ 60%

The murine orthologues of these molecules are RAP-011 and RAP-536; extracellular domains are identical, but linked to murine IgG2a Fc domain.
ACE-536 correct anemia by promoting late stage erythropoiesis

Inhibits SMAD2/3 signaling

Studies using RAP-536, murine analogue of luspatercept

TBS, tris-buffered saline; M:E, myeloid:erythroid.

ACE-536 increases hemoglobin and reduces transfusion burden in patients with low or intermediate-1 risk myelodysplastic syndromes (MDS): Final results from a phase 2 study

Uwe Platzbecker, MD1, Ulrich Germing, MD*,2, Aristoteles Giagounidis, MD PhD3, Katharina Götze, MD*,4, Philipp Kiewe, MD*,5, Karin Tina Mayer, MD*,6, Oliver Ottmann, MD7, Markus Radsak, MD*,8, Thomas Wolff, MD9, Detlef Haase, MD*,10, Monty Hankin*,11, Dawn Wilson*,11, Xiaosha Zhang*,11, Abderrahmane Laadem, MD12, Matthew L. Sherman, MD11, and Kenneth M. Attie, MD

1Universitätsklinikum Carl Gustav Carus, Dresden; 2Universitätsklinikum Düsseldorf; 3Marien Hospital Düsseldorf; 4Technical University of Munich; 5Onkologischer Schwerpunkt Oskar-Helene-Heim, Berlin; 6Universitätsklinikum Bonn; 7Klinikum der J.W. Goethe-Universität Frankfurt; 8University Medical Center - Johannes Gutenberg-Universität, Mainz; 9OncoResearch Lerchenfeld UG, Hamburg; 10Department of Hematology and Medical Oncology, University Medicine of Göttingen, Germany; 11Acceleron Pharma, Cambridge, MA; 12Celgene Corporation, Summit, NJ, USA

Study supported by Acceleron and Celgene

HI-E response rate by ring-sideroblast morphology, SF3B1 mutation

Response rate at higher dose levels (0.75–1.75 mg/kg)

<table>
<thead>
<tr>
<th>Patient Subgroup</th>
<th>IWG HI-E Response Rate (0.75-1.75 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS positive¹</td>
<td>19/35 (54%)</td>
</tr>
<tr>
<td>EPO < 200 U/L</td>
<td>14/23 (61%)</td>
</tr>
<tr>
<td>EPO ≥ 200 U/L</td>
<td>5/12 (42%)</td>
</tr>
<tr>
<td>RS negative¹</td>
<td>0/4 (0%)</td>
</tr>
<tr>
<td>SF mutation² present</td>
<td>18/30 (60%)</td>
</tr>
<tr>
<td>SF mutation² absent</td>
<td>1/9 (11%)</td>
</tr>
</tbody>
</table>

Data as of 03 October 2014.
An open-label, phase 2, dose-finding study of sotatercept (ACE-011) in patients with low or intermediate-1 (Int-1)-risk myelodysplastic syndromes (MDS) or non-proliferative chronic myelomonocytic leukemia (CMML) and anemia requiring transfusion

Rami Komrokji,1 Guillermo Garcia-Manero,2 Lionel Ades,3 Abderrahmane Laadem,4 Bond Vo,4 Thomas Prebet,5 Aspasia Stamatoullas,6 Thomas Boyd, MD,7 Jacques Delaunay,8 David P. Steensma,9 Mikkael A. Sekeres,10 Odile Beyne-Rauzy11, Jun Zou4, Kenneth Attie12, Matthew L. Sherman12, Pierre Fenaux13, and Alan F. List14

1Moffitt Cancer Center, Tampa, FL; 2University of Texas M.D. Anderson Cancer Center, Houston, TX; 3Hôpital St Louis, Paris, France; 4Celgene Corporation, Summit, NJ; 5Institut Paoli Calmettes, Marseille, France; 6Centre Henri Becquerel, Rouen, France; 7North Star Lodge Cancer Center, Yakima, WA; 8CHU de Nantes – Hôtel Dieu, Nantes, France; 9Dana Farber Cancer Institute, Boston, MA; 10Leukemia Program, Cleveland Clinic, Cleveland, OH; 11Centre Hospitalier Universitaire Purpan Pavillon de Médecines, Toulouse, France; 12Acceleron Pharma, Cambridge, MA; 13Service d'Hématologie Séniors, Hôpital St Louis, Université Paris 7, Paris, France; 14Malignant Hematology, Moffitt Cancer Center, Tampa, FL

Results: efficacy in HTB patients

<table>
<thead>
<tr>
<th>Sotatercept dose cohort</th>
<th>Overall (N = 45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mg/kg (n = 7)</td>
<td>0</td>
</tr>
<tr>
<td>0.3 mg/kg (n = 6)</td>
<td>4 (66.7)</td>
</tr>
<tr>
<td>0.5 mg/kg (n = 17)</td>
<td>7 (41.2)</td>
</tr>
<tr>
<td>1.0 mg/kg (n = 14)</td>
<td>8 (57.1)</td>
</tr>
<tr>
<td>Total (N = 45)</td>
<td>19 (42)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfusion burden reduction ≥ 4 RBC units/8 weeks, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mg/kg (n = 7)</td>
</tr>
<tr>
<td>0.3 mg/kg (n = 6)</td>
</tr>
<tr>
<td>0.5 mg/kg (n = 17)</td>
</tr>
<tr>
<td>1.0 mg/kg (n = 14)</td>
</tr>
<tr>
<td>Total (N = 45)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of longest response, median (range), days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mg/kg (n = 7)</td>
</tr>
<tr>
<td>0.3 mg/kg (n = 6)</td>
</tr>
<tr>
<td>0.5 mg/kg (n = 17)</td>
</tr>
<tr>
<td>1.0 mg/kg (n = 14)</td>
</tr>
<tr>
<td>Total (N = 45)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RBC-TI ≥ 56 days, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mg/kg (n = 7)</td>
</tr>
<tr>
<td>0.3 mg/kg (n = 6)</td>
</tr>
<tr>
<td>0.5 mg/kg (n = 17)</td>
</tr>
<tr>
<td>1.0 mg/kg (n = 14)</td>
</tr>
<tr>
<td>Total (N = 45)</td>
</tr>
</tbody>
</table>
Conclusions: Pathogenesis of ineffective hematopoiesis

- TGF β / Activin Ligands
- Transphosphorylated TBR complex
- Lustanercept, Sotatercept
- LY-2157299
- LY-2157299

- Smad 7
- Smad2
- Smad3
- Ineffective hematopoiesis
- Low Blood Counts

miR-21
Conclusions

- SMAD2/3 pathway is overactivated in MDS HSPCs
- SMAD7 is a negative regulator of ALK4/5 and is decreased in MDS
- Luspatercept and Sotatercept show promising evidence of clinical activity in a cohort of lower-risk MDS patients who were anaemic and refractory to ESAs
- Lustanercept is being evaluated in a multicenter Phase III trial in RARS
Acknowledgements

Li Zhou
Tushar Bhagat
Yiting Yu
Sanchari Bhattacharyya
Orsolya Giricz
Matthias Bartenstein
Marianna

Stem Cells
Uli Steidl
Britta Will

Gene Expression data
Jackie Boultonwood
Andrea Pellagatti

Epigenetics
John Greally

Red cell studies
Amittha Wickrema

Luspatercept study
U. Platzbecker et al.

Sotatercept study
Rami Komrokji,
Guillermo Garcia-Manero,
Alan List et al.

Acceleron
Ravi Kumar

Eli Lilly
Susan Guba