Treatment goals in MDS

- Get rid of it
- If you can’t do that, make life better and longer
 - Improve blood counts
 - Improve quality of life
 - Decrease time to progression/leukemia

Hematopoietic Growth Factors: What are they?

- Synthetic versions of proteins normally made in the body to stimulate growth of red cells, white cells and platelets
- Promote growth and differentiation
- Inhibitors of apoptosis (cell death)

Erythropoietin (epo) in MDS

- Anemia is present in >80% of MDS pts at dx
- Transfusions help, but many issues
- Recombinant EPO is FDA-approved for treating anemia associated with kidney failure
- Has been used since about 1990 in MDS
- Response rates in about 15-30% of patients
- Many different studies including >1000 patients
- Part of the NCCN MDS treatment guidelines

- Often high endogenous epo levels
- Many different doses and schedules
- Higher response rates with epo + G-CSF if epo ≤500 mU/mL and transfusions <2 U/month
- Poor probability of response if epo >500 mU/mL and transfusions >2 U/month

Erythropoietin (epo) in MDS

- Varying response criteria in clinical trials: usually complete response is increase in hgb to at least 11.5 without transfusions, partial response increase of hgb by at least 1.5 g/dl or reduction in transfusion requirements
- Responses usually in 12-16 weeks
- Generally well-tolerated
- Side effects: hypertension, fever, headache, nausea, chest pain

Problem

- Studies of EPO in solid tumor patients showed increased heart attacks, stroke, heart failure, blood clots, increased tumor growth, death, especially when hgb > 12
- Has resulted in concern for MDS patients, but NO DATA yet showing these effects in MDS patients
- Has had major effects on insurance coverage

EPO in MDS: Good or Bad?

- Will be difficult to do a study in MDS proving EPO is safe, so concern will remain
- Note: JCO study, Jadersten et al (vol 26, July 2008): Erythropoietin and granulocyte-colony stimulating factor treatment associated with improved survival in MDS
- Mostly low-risk patients
- Erythroid response 39%, median duration 23 mos
- Improved survival in pts requiring fewer than 2 units/month
- No increased AML

Stimulating White Blood Cells

- Don’t treat the number, treat the patient
- Not for routine treatment
- Active infections, recurrent/resistant infections, neutropenic fever
- Can be combined with red cell growth factors to improve responses in some patients
- Side effects: fever, bone pain, injection site reactions
- Does stimulating white cells cause leukemia??

Romiplostim in MDS Summary

- In patients receiving azacitidine, romiplostim vs placebo:
 - increased PLT counts over time and increased PLT count nadir during treatment cycles
 - reduced incidence of clinically significant thrombocytopenic events
 - reduced incidence of PLT transfusions
 - fewer Grade ≥ 3 bleeding events
- Romiplostim plus azacitidine well-tolerated
Lenalidomide: Erythroid Response Data

<table>
<thead>
<tr>
<th>Data Parameter</th>
<th>Del 5q (n=148)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythroid response Transfusion indep</td>
<td>99 (67%)*</td>
</tr>
<tr>
<td>Minor (>50% ↓)</td>
<td>13 (9%)</td>
</tr>
<tr>
<td>Median duration of transfusion independence †</td>
<td>>104 wks</td>
</tr>
<tr>
<td>Median Hgb rise</td>
<td>5.4 g/dL (1.1–11.4)</td>
</tr>
<tr>
<td>Median time to initial response</td>
<td>4.6 wk (1–49)</td>
</tr>
</tbody>
</table>

*P<0.001; †not reached at median follow-up of 104 wk

90% of responses occur within the first 3 months

Practical issues with lenalidomide

- CBC weekly for at least first 8 weeks, significant neutropenia and thrombocytopenia
- Dose adjustments may be necessary for thrombocytopenia and neutropenia, but they may be indicative of response, especially in 5q- patients

Epigenetic Therapy

- Fully methylated DNA
- Hypomethylated DNA
- Unmethylated DNA
- Differentiation - Apoptosis - Senescence - Enhanced Immune Response

CALGB 9221 Phase 3 Trial of Subcutaneous Azacitidine vs Supportive Care

- RX RAEB
- RAEB-T
- CML (n=191)
- Supportive Care
- Azacitidine 75 mg/m2/day for 7 days every 28 days
- Response*: Continue No response*: Off study

Randomized Study of Azacitidine in Patients With MDS: Results

- (N=191)
- Azacitidine
- Supportive Care

Effect of Azacitidine on Quality of Life and Transfusions

Improvement in:
- Fatigue
- Dyspnea
- Physical functioning
- Positive affect
- Psychologic distress

45% became transfusion-independent
9% had a 50% reduction in transfusions

Azacitidine vs Supportive Care: Most Frequent Adverse Events (>30%)

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Azacitidine (n=220), %</th>
<th>Supportive care (n=92), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>70.5</td>
<td>17.4</td>
</tr>
<tr>
<td>Anemia</td>
<td>69.5</td>
<td>64.1</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>65.5</td>
<td>45.7</td>
</tr>
<tr>
<td>Vomiting</td>
<td>54.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>51.8</td>
<td>30.4</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>48.2</td>
<td>29.3</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>36.4</td>
<td>14.1</td>
</tr>
<tr>
<td>Fatigue</td>
<td>36.9</td>
<td>35</td>
</tr>
<tr>
<td>Injection site erythema</td>
<td>35.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Constipation</td>
<td>33.6</td>
<td>6.5</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>32.3</td>
<td>10.9</td>
</tr>
<tr>
<td>Ecthymosis</td>
<td>30.5</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Azacitidine Treatment Prolongs Overall Survival in Higher-Risk MDS Patients Compared with Conventional Care Regimens: Results of the AZA-001 Phase III Study

P Fenaux, MD, GJ Multi, MD, V Santini, MD, C Finelli, MD, A Gla goundidas, MD, R Schich, MD, A List, MD, S Gore, MD, J Sey neur, MD, E Hallelom-Lindberg, MD, J Bennett, MD, J Byrd, MD, J Backstrom, MD, L Zimmerman, BSN, D McKenzie, MS, CL Beach, PharmD and L Silverman, MD, on behalf of the International Vidaza High-Risk MDS Survival Study Group

Azacitidine vs. conventional care regimens

Lancet Oncology 2009;10(3)

Important features of this trial

- 79 sites in 15 countries
- Median age 69 years (38-88)
- 113 pts (32%) met WHO criteria for AML
- 18 pts with IPSS Int-1
- 8 patients sent for allo transplant (did not affect overall survival)
- Azacitidine given for median 9 cycles
Secondary endpoints also favored aza

- OS better for AZA in all cytogenetic subgroups, esp -7/del7q
- Time to AML 17.8 mos AZA, 11.5 mos CCR, p<0.0001
- Improved RBC Transfusion Independence with AZA – 45% with AZA vs 11% with CCR, p<0.0001
- Infections Requiring IV Antimicrobials – Reduced by 33% with AZA vs CCR

Further analysis of AZA-001

- AZA better survival and better tolerated than LDAC (Fenaux, Br J Hematol 2010)
- Older pts with 20-30% blasts improved OS with AZA (Fenaux, JCO 2010)
- Ongoing treatment with AZA beyond time of first response improved quality of response (Silverman, Cancer 2011)

Decitabine in MDS

- Nucleoside analogue (5-aza-2’-deoxycytidine)
- FDA approved on 5/2/06 for:
 - Previously treated and untreated MDS
 - De novo and secondary MDS
 - All FAB subtypes
 - IPSS Int-1, Int-2, and high-risk groups

Phase III Study of Decitabine in Myelodysplastic Syndrome

- Open-label, 1:1 randomized, multi-center study in the US and Canada
- Eligible Patients (N = 170)
 - Decitabine + Supportive Care*
 - 89 pts
 - Supportive Care
 - 81 pts
- Stratification
 - IPSS Classification
 - Prior Chemotherapy
 - Study Center
- Schedule: 15 mg/m² IV 3 hour infusion q 8 hrs x 3 days
- Kantarjian et al, Cancer. 2006 Apr 15;106(8):1794-803

- Complete remission 9%
- Cytogenetic remission 35% vs.10%
- Hematologic improvement 13% vs. 7%
- Overall improvement 30% vs. 7%
- Trend toward longer time to AML/death

Optimizing treatment with hypomethylating agents

• Can we predict who will respond?
• How do we select which one for which patient?
• Combinations?
• Can we predict resistance?
• Can we predict who should get ongoing cycles and who should stop?

Allogeneic Stem Cell Transplantation

• The only potentially curative treatment
• Almost always recommended for high-risk MDS patients <60 years
• Can definitely be done for patients >60 years
• Recent data suggest survival benefit for patients 60-70 years, but still controversial

Supportive Care

• Anti-microbial agents
• Blood transfusions
• ? Iron chelation

Excess Iron is deposited in multiple organs, resulting in organ damage

Iron overload
Capacity of serum transferrin to bind iron is exceeded

NTBI circulates in the plasma; Labile forms of NTBI (e.g. SPI enter cells and raise the levels of labile cell iron (LCI)

Excess iron promotes the generation of free hydroxyl radicals, propagation of oxygen-related tissue damage

Insoluble iron complexes are deposited in body tissues and end-organ toxicity occurs

Cardiac failure
Liver cirrhosis/ fibrosis/cancer
Diabetes mellitus
Infertility
Infectious osteonecrosis of the jaw

Chelation aims:

preventing LIP formation & LCI accumulation

Ok, so how do we know if there’s too much iron?
Assessing Iron Overload

• Serum ferritin concentration
 – Used in clinical practice globally
• Liver biopsy
 – Gold standard for kids, not feasible in most MDS
• Magnetic resonance imaging (MRI)
 – Investigational, potential for broad access
 – T2* cardiac MRI
• Magnetic susceptometry (SQUID)
 – Investigational, very limited access

Complications of iron overload: keep in mind…

• Most of the data are from children with thalassemia: severe anemia, chronic transfusions starting at age 1
• Iron-related heart disease most common cause of death
• Clear evidence that chelation with deferoxamine improved survival and helped liver and endocrine complications

Deferoxamine (Desferal®)

• Most clinical experience, dosing and administration well-known
• Reduces morbidity and mortality for sure in kids with thal, less clear in adults

Challenges of therapy

– Subcutaneous or IV administration
– Continuous 12-hour infusion 5–7 days/week rec’d
– Infusion-site reactions and pain
– Eye and ear side effects, need periodic exams
– Infectious complications
– High degree of noncompliance

• Survival correlated with compliance

The $6 billion question

• Does this mean iron overload is bad for everyone and chelation (treatment to get rid of iron) is good for everyone at risk of iron overload?

BUT…

• Limited evidence showing that iron causes clinically significant organ damage in MDS patients
• Unclear how to measure iron overload (ferritin, transferrin saturation, NTBI, liver biopsy, SQUID, liver MRI, cardiac T2* MRI)
• No prospective data demonstrating that chelation improves survival
• Unclear which chelator to use (deferoxamine, deferiprone, deferasirox) and how to measure efficacy

Critical questions…

• Does iron overload shorten survival in MDS? Maybe
• Does iron overload hasten transformation to leukemia? Maybe
• Does iron overload worsen hematopoiesis? Maybe
• Does iron overload worsen outcomes of stem cell transplantation by increasing infections and/or VOD? Probably
• Does chelation treatment get rid of excess iron? Seems to
So, now what do I do? Consider...

- Transfusion-dependent patients with IPSS low or int-1 MDS (or WHO RA, RARS, 5q-syndrome)
- Life expectancy > 1 year
- Serum ferritin > 1000 μg/L or evidence of iron-related organ damage; target serum ferritin < 1000
- Higher risk MDS patients who are candidates for stem cell transplant
- Deferoxamine or deferasirox with close clinical and lab monitoring
- Don’t just use deferoxamine at times of transfusion

Conclusions

- Treatment options for MDS better than 10 years ago, but much work still needed
- Interesting new drugs, but no magic bullet yet
- Features of personalized medicine starting to take shape
- Need to optimize stem cell transplantation
- CLINICAL TRIALS

Selected Trials at Weill Cornell - NYP

- Vosaroxin for patients previously treated with aza or dac
- SGI-110 for patients previously treated with aza or dac
- Rigosertib for patients previously treated with aza or dac
- Azacitidine + pracinostat/placebo for patients with untreated int-2 or high-risk MDS

Reassurance with Personalization

- We will get to know everything about you
- Your medical issues
- Your family
- Your pets
- Your hobbies
- YOU as a person

Proposed treatment algorithm for patients with MDS

Low-risk (IPSS low, INT-1) (BM blasts < 10%)

- Iron chelation
- Growth factors (Epo, G-CSF)
- MTI (5-AZA/decitabine)
- Lenalidomide (5q-)
- Immunomodulation
- Clinical trial

High-risk (IPSS INT-2, high) (BM blasts > 10%)

- Intensive chemotherapy
- MTI (5-AZA/decitabine)
- Clinical trial

Failure/Progression

Allo SCT

Any age

Age ≤ 60

Age ≥ 60

Failure

Failure

Consider in younger patients with diploid cytogenetics
Consider earlier in younger patients

Atallah. Cancer Inv. 2008;26:208-16
But, can we cure with personalization?

- Using advanced technologies to identify specific characteristics of an individual’s cancer cells
- Mutations
- Signaling pathways
- A unique ‘fingerprint’
- Then, just find the right drug, right?

We need personalized medicine, not anecdotal medicine

- One patient per regimen doesn’t work
- Start with a treatment backbone, then tailor
- Novel and efficient clinical trial designs
- Novel drug development strategies
- Clinical trials for newly diagnosed and relapsed patients AND for those in remission
- Study the cured patients: why are some cured, while others are not?

IMPORTANT CHANGES

- New, broad consent forms for diagnostic material: don’t throw science in the garbage (literally!)
- Expanded biobanking with clinical annotation
- Change the culture: none of this will work if patients don’t participate

CRUSHMDS.ORG
The Weill Cornell – NYPH Leukemia Program

Gail J. Roboz, M.D.
Eric J. Feldman, M.D.
Ellen K. Ritchie, M.D.
Joseph Scandura, M.D.
Pinkal Desai, M.D.
Sangmin Lee, M.D.
Richard T. Silver, M.D.
Jeffrey Ball, M.D.
Cindy Ippolitti, Pharm.D.
Sandra Allen-Bard, N.P.
Maureen Thyne, P.A.
Jenny Park, N.P.
Tania Curcio, N.P.
Yulia Dault, R.N.
Jeremy Heinerich, PA-C
Jessica Markis, R.N.

Laboratory Collaborators:
• Monica Guzman, Ph.D.
• Ari Melnick, M.D.
• Ross Levine, M.D.
• Joseph Scandura, M.D.

I’d be happy to see you at Weill Cornell/NYP!

Weill Cornell Medical Center
The New York Presbyterian Hospital
525 East 68th Street
New York, NY
(646) 962-2700