What is PNH?

- A rare and unusual acquired hematologic disorder characterized by:
 - Intravascular hemolysis (breaking apart of red cells in the blood vessels)
 - Bone marrow failure (cytopenias= low blood counts)
 - Thrombosis (Blood clots)
- There is an incredible amount of clinical heterogeneity amongst patients with PNH.

1st published case report of PNH - 1866

Gull WW. Guy’s Hospital Reports 12:381-392, 1866.
What causes PNH?

- **PNH requires “two-hits”**
 1. A mutation must occur in a hematopoietic stem cell.
 - Partial or complete deficiency of the GPI anchor
 2. PNH is due to a condition that allows this mutated cell to become the dominant cell in the bone marrow.

The Missing Proteins in PNH

- Complement defense proteins
 - CD55 (decay accelerating factor, DAF)
 - CD59 (membrane inhibitor of reactive lysis)
- Enzymes
 - Acetylcholinesterase
 - Alkaline phosphatase
- Immune system ligands
 - Adhesion molecules
 - NCAM
 - Fibronectin receptor
- Growth Factors and receptors
- Differentiation antigens
 - CD45 (monocytes)
 - CD19 (B cells)
- Anti-procoagulant proteins
 - uPAR (CD87)
Complement Activation

- **Classical Pathway**
- **Lectin Pathway**
- **Alternative Pathway**

Complement Activation Consequences
- Membrane Attack Complex (MAC) formation leads to:
 - Prothrombotic
 - Potent anaphylatoxin
 - Chemotaxis
 - Cell Activation
 - Proinflammatory

Membrane Attack Complex
-

Complement Sensitivity of Normal and PNH Red Cells

- Normal cells are specifically sensitive, while PNH cells are insensitive.

Models of pathogenesis

- Normal Marrow
- Aplastic Anemia
- PNH
- MDS

Bone Marrow Failure Syndromes and PNH

- Normal
- PNH w/AA or MDS
- MDS (occasional PNH clone)

Glycosylphosphatidylinositol-specific, CD16-restricted T cells in paroxysmal nocturnal hemoglobinuria

- Key Points:
 - The mechanism of bone marrow failure (BMF) in PNH is not known.
 - Novel CD16-restricted GPI-specific T cells are present in PNH patients and might be responsible for BMF.
Clonal selection – T cell mediated process
Clonal dominance – ?
Clonal expansion – ?

Deep sequencing reveals stepwise mutation acquisition
in paroxysmal nocturnal hemoglobinuria

The clinical picture of PNH

- Hemolysis due to complement activation
 - Anemia and fatigue
 - Hemoglobinuria, kidney damage
 - Nitric oxide trapping >> Esophageal spasm, abdominal pain, pulmonary hypertension, impotence, fatigue

- Thrombosis – Cause of blood clots is still unknown
 - Unusual sites of blood clots
- Bone marrow failure
 - Decreased blood counts (cytopenias)

Fatigue in PNH is significant

- Rosse book chapter (Hoffman-Hematology)¹
 - “Many patients note a feeling of fatigue that may be disabling during periods of hemoglobinuria.”
 - This is not related to hemoglobin level (anemia), as it disappears when the hemoglobinuria stops.”

- Brodsky book chapter (Hoffman-Hematology)²
 - “PNH patients frequently complain of disabling fatigue that is often out of proportion to the degree of anemia.”

Clinical Aspects of PNH

Significant Mortality in PNH

- 5 year mortality: 35%
- Diagnosed at all ages - median time from diagnosis to death: 10-15 yrs

Fatigue in PNH is significant

- Rosse book chapter (Hoffman-Hematology)¹
 - “Many patients note a feeling of fatigue that may be disabling during periods of hemoglobinuria.”
 - This is not related to hemoglobin level (anemia), as it disappears when the hemoglobinuria stops.”

- Brodsky book chapter (Hoffman-Hematology)²
 - “PNH patients frequently complain of disabling fatigue that is often out of proportion to the degree of anemia.”

Clone size

Clone size refers to how many of the bone marrow stem cells have the mutation. In PNH, since the PNH red cells are being destroyed, the % of red cells that are CD59 – (PNH cells) does not give an accurate estimate of clone size. The white cells (granulocytes or monocytes) are not destroyed. Therefore the % of abnormal granulocytes is a more accurate estimate of the percentage of abnormal stem cells in the bone marrow.

What about thrombosis (blood clots) in PNH?

- Blood clots are a presenting sign in 10-20% of patients with PNH.
- Can occur in up to 40% of patients with PNH.
- Occur in unusual locations – veins of the liver (Budd-Chiari syndrome), spleen, brain, and skin.
- Associated with a very bad prognosis
- Cause of these blood clots is unknown – possibly related to complement activation.

Chronic Renal Insufficiency in PNH

- Associated with hemolysis and/or microvascular thrombosis
- Insidious and progressive chronic renal insufficiency (CRI, GFR <60/ml/min) in up to ~30% of patients
- May be acute renal failure, which is frequently reversible
- Renal failure reported as cause of death in ~8% of US PNH patients

Diagnosis of PNH

Average delay to diagnosis exceeds 3 years; may be greater than 10 years

- PNH continues to be primarily a clinical diagnosis, which can be confirmed by laboratory analyses
- Signs and symptoms are highly variable and may mirror other conditions
- Most common symptoms at presentation are not unique to PNH
 - Hemolytic anemia, often requiring transfusions
 - Fatigue
 - Dyspnea
 - Abdominal pain or dysphagia

Flow Cytometry: Diagnostic Test for PNH

- Perform on peripheral blood
- Test both granulocytes and erythrocytes
 - Erythrocytes alone are not sufficient due to hemolysis and the dilution effect of transfusions
- Use monoclonal antibodies against GPI-anchored proteins, such as CD59 or CD55
- PNH blood cells (PNH clone) are cells missing GPI-anchored proteins
Fluorescent AERolysin (FLAER)

- FLAER binds to the GPI-anchor itself, rather than to a single protein such as CD55 or CD59
- FLAER provides much greater signal noise and better accuracy than an antibody against a single target

Who Should Be Screened For PNH?

- Patients with:
 - Hemoglobinuria
 - Hemolytic anemia
 - Bone marrow dysfunction
 - Aplastic anemia (AA) or MDS screened annually
 - Coombs-negative intravascular hemolysis
 - Elevated serum LDH
 - Unusual or unexplained venous thrombosis
 - Budd-Chiari syndrome
 - Mesenteric, portal, cerebral, or dermal veins
 - Unexplained arterial thrombosis

LDH = lactate dehydrogenase; MDS = myelodysplastic syndrome.

What happens to PNH patients?

PNH - What do patients die from?

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>Duke</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombosis</td>
<td>16 (42%)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>Abd site</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Other site</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Arterial</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>4 (10.5%)</td>
<td>9 (24%)</td>
</tr>
<tr>
<td>Severe Infection</td>
<td>14 (36.5%)</td>
<td>14 (36.8%)</td>
</tr>
<tr>
<td>MDS/AML</td>
<td>3 (8%)</td>
<td>6 (16%)</td>
</tr>
<tr>
<td>Renal failure</td>
<td>3 (8%)</td>
<td>7 (18%)</td>
</tr>
<tr>
<td>Other malignancy</td>
<td>2 (5%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>2 (5%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Possible long term effects of Eculizumab

- Improve kidney function
- Prevent pulmonary hypertension
- Increase survival

PNH Survival - Pre-eculizumab

Actuarial Survival From the Time of Diagnosis in 80 Patients With PNH

- Improve kidney function
- Prevent pulmonary hypertension
- Increase survival
Eculizumab Has a Major Impact on Survival in PNH

- 96% (76/79) patient survival
- There was no difference in mortality between patients on eculizumab and the normal population (P=0.46)

Survival is comparable to age and gender-matched control population out to 8 years