Myelodysplastic Syndromes
Current Thinking on Disease, Diagnosis and Treatment

Hetty Carraway, MD, MBA, FACP
Associate Professor
Taussig Cancer Institute
Cleveland Clinic

Overview:
Biology and Diagnosis of MDS
Scoring System/Prognosis
Treatment Options for Low Risk MDS
Treatment Options for High Risk MDS

What is MDS?
- 15,000 - 25,000 new cases/year
- Median age 71 M > F
- Clonal disorder: multi-lineage hematopoietic progenitor
- Ineffective hematopoiesis with peripheral cytopenias
- Bone Marrow Failure State:
 - Patients present with fatigue, infection or bleeding
 - Transformation to AML in ~ 1 in 3
 - Allo BMT only curative option

Epidemiology
Overall incidence: 3.4 per 100,000

Incidence Rates, All Races, Both Sexes, 2000-2009

Age-Specific (Crude) SEER Incidence Rates, All Races, Both Sexes, 2000-2009
MDS Pathogenesis

Stage 1: Intrinsic increase in apoptotic response and inflammation
- Enhanced production of pro-inflammatory cytokines
- Impaired hematopoietic microenvironment

Stage 2: Acquisition of anti-apoptotic molecules
- Expression of Bcl-2, Mcl-1
- Suppression of TNFα-induced apoptosis

Stage 3: Initiation of clonal evolution
- Chromosomal abnormalities
- Increased risk of leukemia transformation

Genetic Abnormalities in MDS

<table>
<thead>
<tr>
<th>Translocations/Rearrangements</th>
<th>Uniparental Disomy</th>
<th>Microdeletions</th>
<th>Copy Number Change</th>
<th>Point Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rare in MDS</td>
<td>Rare - often seen in point mutations</td>
<td>About 90% of cases</td>
<td>TdT, del(7q)</td>
<td>Most common</td>
</tr>
</tbody>
</table>

Clinical Overlap / Associations:

- Acute Myeloid Leukemia
- Myeloproliferative Disease
- Paroxysmal Nocturnal Hemoglobinuria
- Autoimmune diseases
 - Aplastic Anemia
 - LGL leukemia
 - Pure Red Cell Aplasia

Bone Marrow Failure: Signs and Symptoms

Anemia
- Fatigue, pallor
- Shortness of breath, decreased exercise tolerance
- Exacerbation of heart failure, angina

Neutropenia
- Active infection (bronchitis, sinusitis, pneumonia, etc.)
- Risk of infections

Thrombocytopenia
- Petechiae, bruising, bleeding
- Risk of bleeding

MDS: Diagnostic Evaluation

- Peripheral blood counts + reticulocyte count
- Bone marrow biopsy and aspiration
 - Bone marrow blasts %
 - Cytogenetics
 - Iron stain
 - Reticulin stain
- Additional tests
 - Iron saturation, ferritin
 - B12, folate levels
 - EPO level

Establish diagnosis of MDS & determine subtype & prognosis:
- FAB/WHO Classification
- IPSS/IPSS-R score
MDS: Diagnostic Evaluation

- Peripheral blood counts + reticulocyte count
- Bone marrow biopsy and aspiration
 - Bone marrow blasts %
 - Cytogenetics
 - Iron stain
 - Reticulin stain
- Additional tests
 - Iron saturation, ferritin
 - B12, folate levels
 - EPO level

Establish diagnosis of MDS & determine subtype & prognosis:
- FAB/WHO Classification
- IPSS/IPSS-R score

Performing a bone marrow aspiration

Cytologic Dysplasia: Bone Marrow DysErythropoiesis

Courtesy of Dr. Bennett and Dr. List.

Cytologic Dysplasia: Marrow and Blood DysGranulopoiesis

Courtesy of Dr. Bennett and Dr. List.

Cytologic Dysplasia: Marrow and Blood DysMegakaryopoiesis

Courtesy of Dr. Bennett and Dr. List.

FAB vs WHO Classification

<table>
<thead>
<tr>
<th>FAB</th>
<th>WHO</th>
<th>Dysplasia(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>Sq-Syndrome</td>
<td>Erythopoietic</td>
</tr>
<tr>
<td>RA</td>
<td>RA</td>
<td>Erythopoietic</td>
</tr>
<tr>
<td>MDS-U</td>
<td>RCMD</td>
<td>2-3 lineages</td>
</tr>
<tr>
<td>RARS</td>
<td>MDS-U</td>
<td>1 lineage</td>
</tr>
<tr>
<td>RARS</td>
<td>RARS-RS</td>
<td>2-3 lineages</td>
</tr>
<tr>
<td>RAEB-1</td>
<td>RAEB-1</td>
<td>1-3 lineages</td>
</tr>
<tr>
<td>RAEB-2</td>
<td>RAEB-2</td>
<td>1-3 lineages</td>
</tr>
<tr>
<td>RAEB-T</td>
<td>AML</td>
<td></td>
</tr>
<tr>
<td>CMML</td>
<td>CMML (if WBC < 13,000u/l)</td>
<td></td>
</tr>
</tbody>
</table>

How Do We Classify MDS?

IPSS 1997

WPSS 2007

FAB 1970-80

WHO 1999

IPSS-R 2012

IPSS Is Most Common Tool for Risk Stratification of MDS

<table>
<thead>
<tr>
<th>Prognostic variable</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow blasts</td>
<td>≤ 5%</td>
<td>5% to 10%</td>
<td>11% to 20%</td>
<td>21% to 30%</td>
<td>≥ 31%</td>
<td>≥ 41%</td>
</tr>
<tr>
<td>Karyotype*</td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Cytopenias</td>
<td>0/1</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>

*Good = normal, −, del(5q), del(20q); Intermediate = other karyotypic abnormalities; Poor = complex (≥ 3 abnormalities) or chromosome 7 abnormalities.
†Hb < 10 g/dL; ANC < 1500/μL; platelets < 100,000/μL.

Total Score:

<table>
<thead>
<tr>
<th>Risk</th>
<th>Low</th>
<th>Intermediate I</th>
<th>Intermediate II</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median survival, yrs</td>
<td>5.7</td>
<td>3.5</td>
<td>1.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

IPSS-R: Revised June 2012

1. New marrow blast categories
 - ≤ 2, >2 - ≤ 5, > 5 - 10, > 10 - 30%
2. Refined cytogenetic abnormalities and risk groups
 - 16 (vs 6) specific abnormalities, 5 (vs 3) subgroups
3. Evaluation of depth of cytopenias
 - clinically and statistically relevant cut points used
4. Inclusion of differentiating features
 - Age, Performance Status, ferritin, LDH, Beta-2 microglobulin
5. Prognostic model with 5 (vs 4) risk categories
 - improved predictive power

IPSS-R: Prognostic Score Variables

<table>
<thead>
<tr>
<th>P.Variable</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytogenetics</td>
<td>Very Good</td>
<td>Good</td>
<td>Intermediate</td>
<td>Poor</td>
<td>Very Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM Blast %</td>
<td>≤ 2</td>
<td>>2-5%</td>
<td>5-10%</td>
<td>>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>≥10</td>
<td>8-10</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets</td>
<td>≥100</td>
<td>50-100</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANC</td>
<td>≥0.8</td>
<td><0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPSS-R: Prognostic Risk Categories/Scores

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>Risk Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>≤ 1.5</td>
</tr>
<tr>
<td>Low</td>
<td>>1.5-3</td>
</tr>
<tr>
<td>Intermediate</td>
<td>>3-4.5</td>
</tr>
<tr>
<td>High</td>
<td>>4.5-6</td>
</tr>
<tr>
<td>Very High</td>
<td>>6</td>
</tr>
</tbody>
</table>

High risk

Mutation Profiling

- Powerful tool
 - Diagnose disease (from aging to MDS to AML)
- Prognostic:
 - Risk of Progression
 - IPSS, IPSS-R and now IPSS-R-M
- Predictive
 - Chemo and BMT response/non-response
- Targeted therapies
 - SF3B1/TET2/IDH1/IDH2/FLT3
CHIP as a Precursor State to Hematological Neoplasms

Clonal Hematopoiesis of Indeterminate Potential
Clonality Dysplasia Cytopenias Blasts

Steenema, D. Mayo Clinic Proceedings. 2015. 969-83

Unique Mutation Profile Helps Identify/Confirm Disease

- SF3B31 and JAK2: RAEB-T
- TET2, SRSF2, DNMT3A, ASXL1, SETBP1: CMML
- SRSF2, SF3B1, U2AF1, ASXL1, EZH2, BCOR, STAG2 can be highly specific for secondary AML (as compared to de novo AML)
- DDX41: Identify novel germline/inherited disorders

New Model: IPSS-Rm

- Total of 508 MDS patients from 2000-2012
 - 333 as training set
 - 175 as validation set
- Use age, IPSS-R, and mutation data
- Dynamic modification of IPSS-R to enhance predictive ability in MDS patients regardless of initial/subsequent therapy at any time in disease course

Somatic Mutations Are Associated With Disease Risk and MDS Subtype

Somatic Mutations Are Associated With Disease Risk and MDS Subtype

Survival: MDS

<table>
<thead>
<tr>
<th>MDS</th>
<th>IPSS Score</th>
<th>Risk Group</th>
<th>Median Survival (Yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Low</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>0.5-1</td>
<td>Int-1</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1.5-2</td>
<td>Int-2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>>2</td>
<td>High</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Survival: MDS

<table>
<thead>
<tr>
<th>IPSS Score</th>
<th>Risk Group</th>
<th>Median Survival (Yrs)</th>
<th>Stage</th>
<th>Median Survival (Yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low</td>
<td>5.7</td>
<td>Ia</td>
<td>8</td>
</tr>
<tr>
<td>0.5-1</td>
<td>Int-1</td>
<td>3.5</td>
<td>Ila</td>
<td>5.4</td>
</tr>
<tr>
<td>1.5-2</td>
<td>Int-2</td>
<td>1.2</td>
<td>Illa</td>
<td>2.4</td>
</tr>
<tr>
<td>>2</td>
<td>High</td>
<td>0.4</td>
<td>IV</td>
<td>1.2</td>
</tr>
</tbody>
</table>

IPSS-R: Survival by Risk Category

THESE PATIENTS UNTREATED

![Survival Graph](Greenberg PL, et al. Blood. 2012;120:2454-2465.)

What Does MDS Look Like?

Clinician’s perspective…

Physician Survey Data

- Questionnaires completed by 101 docs
 - Geographically representative
 - Took place over 1.5 year period from 2005-07
- 4514 surveys returned
 - $30 incentive for completing each survey

Sekeres et al. J National Cancer Inst 2008;100:1542

U.S. MDS Characteristics

<table>
<thead>
<tr>
<th>Age (median)</th>
<th>Newly diagnosed</th>
<th>Established</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 years</td>
<td>72-75 years</td>
<td></td>
</tr>
</tbody>
</table>

| Sex (mean) | Newly diagnosed (Established) | 55% (51-57%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Male</td>
<td>Male</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of MDS (median)</th>
<th>13-16 months</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MDS Status</th>
<th>Primary</th>
<th>88 – 93%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary</td>
<td>7 – 12%</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>Chemotherapy</td>
<td>55 – 90%</td>
</tr>
<tr>
<td>Cause</td>
<td>Radiation</td>
<td>0 – 21%</td>
</tr>
<tr>
<td>Cause</td>
<td>Chemical exposure</td>
<td>2 – 9%</td>
</tr>
</tbody>
</table>

Sekeres et al. J National Cancer Inst 2008;100:1542
U.S. MDS Characteristics

- Median Hgb: 9.1 g/dl (IQ range 8-10)
- Median Plt: 100,000/mm3 (IQ range 56-151)
- Median ANC: 1780/mm3 (IQ range 1070-2800)
- Circulating Blasts: 1-5%: 16%
 >5%: 10%

Sekeres et al. J National Cancer Inst 2008;100:1542

Transfusion Burden of MDS Patients

MDS Patient Survey

- A self-directed, online survey of MDS patients conducted over a 2-week period in March 2009
 - Sponsored by the AA & MDS Intl. Foundation
 - MDS pts registered with the AA & MDS Intl. Foundation

- N = 358 people from 46 states
- Results were presented at ASH, December 2009

Who Took the Survey?

- Average age: 65 years old
- Gender: 51% women, 49% men

How Long Did It Take to Get an MDS Diagnosis?

- First abnormal blood test
- Diagnosis of MDS: 3 years

Sekeres et al. ASH 2009; abstract 1771.
How Doctors First Describe MDS

- Hematologic malignancy: 80%
- Leukemia: 56%
- Cancer: 12%
- Other: 12%
- Thrombocytopenia: 17%
- Neutropenia: 17%
- Anemia: 11%
- Syndrome: 7.5%
- Blood disorder: 7%
- Leukemia: 4%

Percent of total responses
Sekeres et al. ASH 2009; abst. 1771

What’s My Risk?

- Low risk: 13%
- Int-1: 18%
- Int-2: 11%
- High: 4%
- Don’t know: 55%

IPSS Risk Score
Sekeres et al. ASH 2009; abst. 1771

What’s My Prognosis?

Percentage of MDS patients who never discussed life expectancy with their doctor

- All patients: 35%
- Lower-risk patients: 33%
- Higher-risk patients: 19%

Conclusions: MDS Biology

- MDS is a complex group of bone marrow malignancies that result in marrow failure
 - MDS is rare – but growing cancer
 - Challenging to diagnosis
 - Marrow testing critical to obtain information
 - Morphology, cytogenetics, molecular profiles
 - Important to understand your disease prognosis and implications for therapy
 - IPSS – starting point for risk stratification

Treatment Goals in MDS

- Low IPSS
 - INT-1 IPSS
 - Improve marrow function
 - Decrease transfusion needs
 - Decrease impact of MDS on QOL
 - Establish careful monitoring plan

- INT-2 IPSS
 - High IPSS
 - Stabilize marrow function
 - Lower risk transformation
 - Move to definitive therapy
 - OR
 - Trilineage marrow improvement
Treatment Options for LR-MDS

- Observation/Watch and Wait
- Supportive Transfusions (RBC and platelets)
- Iron Chelation
- Hematopoietic Growth Factors
- Immunosuppressive Therapy (ATG, cyclosporine)
- Immunosomulatory Drugs (Lenalidomide)

Medications Used for MDS

FDA Approved
- HMT
 - Azacitidine
 - Deoxyazaadcinde
- Immunomodulatory
 - Lenalidomide
- Iron chelators
 - Desferasirox
 - Deferoxamine
 - Deferiprone

Approved Other Indications
- Growth Factors
 - Epotin alfa/Darbepoetin alpha
 - Filgrastim (G-CSF)
 - Sargramostim (GM-CSF)
 - Romiplostim (Nplate)
 - Eltrombopag (Promacta)
- Immunosuppressive
- Thalidomide
- Chemotherapy/SCT

What are Hematopoietic Growth Factors?

- Synthetic versions of proteins normally made in the body to stimulate growth of red cells, white cells and platelets
 - Promote growth and differentiation
 - Inhibitors of apoptosis (cell death)
- RED CELL Growth Factors
 - Erythropoietin (EPO, Procrit®, Epogen®)
 - Darbepoetin (Aranesp®)
- WHITE CELL Growth Factors
 - Granulocyte colony stimulating factor (GCSF, Neupogen®)
 - Granulocyte-macrophage colony stim factor (GM-CSF, Leukine®)
 - Pegfilgrastim (Neulasta®)
- PLATELET Growth Factors
 - Thrombopoietin (TPO, romiplostim, Nplate®)

- Note, these are not FDA-approved for MDS

Problem with EPO

- Studies of EPO in solid tumor patients showed increased heart attacks, stroke, heart failure, blood clots, increased tumor growth, death, especially when hgb >12
- Has resulted in concern for MDS patients, but NO DATA yet showing these effects in MDS patients
- Has had major effects on insurance coverage

Patient Selection for ESA

- Good response (74%, n=34)
- Intermediate response (23%, n=31)
- Poor response (7%, n=29)

Stimulating White Blood Cells and PLTS

- **White Cell Growth Factors**: Not routine - DON'T treat the number, treat the patient
 - Active infections - recurrent/resistant infections
 - Neutropenic fever
 - Can be combined with red cell growth factors to improve responses in some patients
 - Side effects: fever, bone pain, injection site reactions
 - Does stimulating white blood cells cause leukemia

- **Platelet Growth Factors**: Not routine - Don't treat number, treat the patient
 - Bleeding history - Single digit plts
 - Romiplostim: Azacitidine Rx pts Romiplostim vs placebo
 - Less bleeding events
 - Does stimulating platelets cause leukemia??

Lenalidomide: Pharmacologic Evolution

- More "potent" immunomodulator than thalidomide
- Up to 50,000 times more potent inhibitor of TNFα
- 3-5 fold stimulation of T-cell proliferation, IL-2 and IFNγ production
- Anti-angiogenesis impact

Seiler J. Semin Oncol 2001; 28:202
Data on file: Summit, NJ: Celgene Corporation 2005

Lenalidomide MDS - 003 Study Design

Eligibility
- del 5q
- ≥2U RBC/8wks
- T6 weeks Ht Platelets >50/10^9
- ANC >500/10^9
- Low/Int-1 Risk

10 mg po qd
- Yes → Continue

10 mg po x21
- No → Off Study

Primary Endpoint: Transfusion-Independence [Hgb >1g/dl]
Secondary: Cytogenetic response, Path Response

List et al. NEJM 2005

MDS-002/003: Intent to Treat Erythroid Response at 24 wk (Preliminary Report)

- Transfusion indep
- Median duration of transfusion independence
- Median time to response

Kaplan-Meier Estimate of the Duration of Independence from Red-Cell Transfusion

Treatmnet GOALS in MDS

- Improve marrow function
- Decrease transfusion Needs
- Decrease impact of MDS on QOL
- Establish careful monitoring plan

Low IPSS
INT-1 IPSS
INT-2 IPSS
High IPSS

- Stabilize marrow function
- Lower risk transformation
- Move to definitive therapy
- Trilineage marrow improvement

Treatment Options for HR-MDS

- Azacitidine (Vidaza) or Decitabine (Dacogen)
- Lenalidomide (Revlimid)
- Intensive Chemotherapy
- Bone Marrow Transplant
- Clinical Trials

Epigenetics

Change in gene expression which is heritable and does not involve a change in DNA sequence (not genetic):
Could inactivate tumor suppressor genes according to Knudson two-hit hypothesis:

Pathway for the Methylation of Cytosine in the Mammalian Genome and Effects of Inhibiting Methylation with 5-Azacytidine

Hypomethylating Agents

Structural Differences

Herman JG, Baylin SG. NEJM 2003;349:2042-54.

Pathway for the Methylation of Cytosine in the Mammalian Genome and Effects of Inhibiting Methylation with 5-Azacytidine

Herman JG, Baylin SG. NEJM 2003;349:2042-54.

CALGB #9221 Trial Design

A Randomized Phase III Controlled Trial of Subcutaneous Azacitidine in Myelodysplastic Syndromes

Silverman L. et al. JCO 2002
Time to AML Transformation

- **Azacitidine**
- **Supportive Care**

Probability of Remaining Event-Free

- **P=0.001**
- **p=0.007**

Silverman L, et al. JCO 2002

Azacitidine Survival Study (AZA-001)

- **5AC 75 mg/m² d x 7 d q28 d (n=179)**
- **Conventional care regimens**
 - Best Supportive Care (BSC) (n=105)
 - Low Dose Ara-C (LDAC, 20 mg/m²/d x 14 d q28-42 d) (n=49)
 - Std Chemo (7 + 3) (n=25)

BSC was included with each arm. Tx continued until unacceptable toxicity, AML transformation, or disease progression.

Fenaux P, et al. Blood. 2007

Overall Survival: Azacitidine vs CCR

- **Log-Rank p=0.0001**
- **HR = 0.58 [95% CI: 0.43, 0.77]**
- **CR=17%; ORR=35%**
- **Difference: 9.4 months**

Decitabine (EORTC) Phase III MDS Trial Study Design

- **Decitabine + Supportive Care**
 - 15mg/m² over 3 hours q8h x 3days q6wks (N=89)
- **Supportive Care**
 - ABX, GFs and/or Transfusions (N=81)

- **Stratification**
 - IPSS - Type of MDS (primary or secondary)

- **Eligible Patients (n=170)**

Response assessed after 2nd cycle, with 2 more cycles given if CR

EORTC: Overall Survival

- **Median (months): 10.1 vs 8.5**
- **HR = 0.88, 95% CI (0.66, 1.17)**
- **Logrank test: p=0.35**

Wijermans P, Lubbert M, Suciu S, et al. ASH, December 6-9, 2008

Azacitidine/Decitabine

- **Administer every 28 days (once a month)**
 - AZA 75mg/m² SC or IV x 7d/mo
 - DAC 20mg/m² IV x 5d/mo
- **Administer at least 4-6 cycles**
 - Side effects: nausea, vomiting, decreased counts (WBC, RBC, plts), fatigue, fevers, infections
 - Side effects are manageable: antibiotics, anti-emetics and transfusions

List A, NEJM 2006; 355: 1456-65
HMT Alone in MDS/AML

<table>
<thead>
<tr>
<th>Reference</th>
<th>Dose (mg/m²)</th>
<th>Schedule</th>
<th>Eval Pts. N</th>
<th>CR N (%)</th>
<th>ORR (%)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wijermans 2000</td>
<td>DAC: 15</td>
<td>IV Q8x 3d</td>
<td>66</td>
<td>20%</td>
<td>49%</td>
<td>15mo mOAS</td>
</tr>
<tr>
<td>Silverman 2002*</td>
<td>SAC: 75</td>
<td>SC x 7d</td>
<td>191</td>
<td>21%</td>
<td>60%</td>
<td>18mo mOAS</td>
</tr>
<tr>
<td>Kantarjian 2006*</td>
<td>DAC: 15</td>
<td>Q8 IV x3d</td>
<td>170</td>
<td>17%</td>
<td>30%</td>
<td>14 mo mOAS</td>
</tr>
<tr>
<td>Steensma 2009</td>
<td>DAC: 20</td>
<td>IV x 5d</td>
<td>99</td>
<td>32%</td>
<td>51%</td>
<td>19.4mo mOAS</td>
</tr>
<tr>
<td>Blum 2010</td>
<td>DAC: 30</td>
<td>IV x 10d</td>
<td>53</td>
<td>64%</td>
<td>13.8 mo OAS</td>
<td></td>
</tr>
<tr>
<td>Fenaux AZA-001</td>
<td>SAC: 75</td>
<td>IV x 7d</td>
<td>179</td>
<td>29%</td>
<td>78%</td>
<td>24.5mo OAS</td>
</tr>
<tr>
<td>Lubbert 2012</td>
<td>DAC: 15</td>
<td>IV Q8s 3d</td>
<td>227</td>
<td>26%</td>
<td>5.5mo OAS</td>
<td></td>
</tr>
<tr>
<td>Garcia-Manero 2013</td>
<td>DAC: 20</td>
<td>D1-3 vs D1,8,15</td>
<td>65</td>
<td>16%</td>
<td>23%</td>
<td>D1-3 best</td>
</tr>
</tbody>
</table>

Limited Options for Pts Failing HMT
- Increase HMT dose or exposure
 - SGI-110 (block deamination/breakdown of HMT drug)
- Switch to alternate HMT agent
- Combination therapy
 - HDACi, chromatin modifier or immunomodulatory agent
- Induction chemotherapy
- Stem cell transplant/RIC or nonmyeloablative
- Clinical Trial

BMT: How To Decide
- Insurance coverage?
- Is there a donor?
- Need to balance the risk of disease progression to risk of treatment (infection/GVHD, organ damage, death)
- Is the patient strong/fit enough for BMT?
 - How to evaluate/Comorbidity Index/Age

Cure: Bone Marrow Transplant
- Allogeneic HCT offers long term DFS for pts with MDS (30-50%)
- Decreased ability to offer HCT due to comorbidities (not age per se)
- Optimize Performance Status/QOL

“BOSTON STRONG”
Colleen Slime, Age 81 Boston Marathon, 2015

What Pre-Transplant Therapy is Best?
- Cytoreduction/Control disease
 - HMT vs Induction chemotherapy vs None
 - No definitively superior approach
 - Allow time for maximal GVL effect
- Ongoing prospective studies
 - Knöger/Platzbecker (SAC alone vs SAC to RIC)
 - EORTC 1301 (10d DAC to BMT vs 3+7 to BMT)
 - BMT CTN 1102 (HMT alone vs HMT to RIC-BMT)
- When to proceed with HCT/timing?

MDS Disease Burden Pre-HCT and Relapse Risk Post-HCT

Cytogenetic Risk and Relapse Post Transplant

![Graph showing probability of relapse for different cytogenetic risk categories: Very Good (n=13), Good (n=46), Intermediate (n=175), Poor (n=148), Very Poor (n=97).]

HCT Decision Analysis

<table>
<thead>
<tr>
<th>IPSS RISK</th>
<th>Estimated Life expectancy (years) after HCT for MDS (age < 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Immediate HCT</td>
</tr>
<tr>
<td>Low</td>
<td>6.51</td>
</tr>
<tr>
<td>Int-1</td>
<td>4.61</td>
</tr>
<tr>
<td>Int-2</td>
<td>4.93</td>
</tr>
<tr>
<td>High</td>
<td>3.20</td>
</tr>
</tbody>
</table>

HCT: Decision Analysis, RIC

<table>
<thead>
<tr>
<th>Estimated Life expectancy (years) after RIC-HCT for MDS (age ≥ 60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low/Int-1</td>
</tr>
<tr>
<td>Overall LE</td>
</tr>
<tr>
<td>QALE: TI</td>
</tr>
<tr>
<td>QALE: TD</td>
</tr>
<tr>
<td>Int-2/High</td>
</tr>
<tr>
<td>QALE: HR-MDS</td>
</tr>
<tr>
<td>QALE: GvHD</td>
</tr>
</tbody>
</table>

Koreth et al. JCO 2013;31:2662

ASBMT/EBMT: Panel Recommendations

- Early HCT for higher-risk MDS and poor-risk lower risk MDS
- No rec for pre-HCT induction chemo/HMT
- No rec for related vs unrelated donor
- No rec for RIC vs high-dose conditioning

Ofarsky et al. BBMT 2009;15:137

Conclusions

- Effective therapy for MDS exists
 - IPSS and IPSS-R; starting point risk stratification
 - Important to set goals of therapy
- Growth factors, transfusions, Len to ↓ transfusions
- Epigenetic tx for high risk and 5AC improves OAS
- Allogeneic HCT offers cure but also toxicity
- Future trials will incorporate molecular mutations for prognostic models to individualize therapy and to inform treatment decisions upfront

Thank you

Cleveland Clinic, Taussig Cancer Center
Leukemia and MDS Program

Anjali Advani, MD
Brian Boswell, MD
Jennifer Carew, PhD
Aaron Gerds, MD, MS
Betty Hamilton, MD
Matt Kalaycio, MD
Jaroslaw Maciejewski, MD, PhD
Sudipto Mukherjee, MD, PhD
Navneet Makhil, MD
Aziz Nazha, MD
Yogen Saunthararajah, MD
Sudipto Mukherjee, MD, PhD

Navneet Makhil, MD
Aziz Nazha, MD
Yogen Saunthararajah, MD
Mikael Sekeres, MD, MS