New Directions in Aplastic Anemia: What’s on (and not on) the Horizon?

Jeffrey M. Lipton, MD, PhD
Professor of Pediatrics and Molecular Medicine
Hofstra North Shore-LIJ School of Medicine
Cohen Children’s Medical Center
Feinstein Institute for Medical Research
New Hyde Park, NY

Aplastic Anemia
Immunotherapy Results
Survival with good to excellent response is approximately 85-90% in children and 60-70% in adults. Relapse or clonal evolution usually 2-4 years. 15-30% require ongoing Cyclosporine A. The risk of clonal disease (MDS, AML or PNH) is real and justifies HLA-matched SCT as the treatment of choice at this time in patients < 40 years of age. The exact incidence of clonal disease in children is unknown.

Risk of Clonal Disease in Adults:
10-15% high risk clonal evolution (7-, high grade MDS, complex karyotype, leukemia)
Survival at 15 years: 95% with no event vs. 65% with an event
75% not high risk event vs. 25% with high risk event

Aplastic Anemia Immunotherapy
• Horse Anti-Thymocyte Globulin (100%) for 4 days (25% for 5 days)
• Methylprednisolone/Prednisone for 4-14 days followed by daily taper
• G-CSF until ANC ≥ 1000/µl (this is controversial – routine (37%), for infection (68.8%))
• Cyclosporine A until G-CSF discontinued and transfusion independent, then taper over 12 months

Aplastic Anemia Treatment
• Mild-Moderate Aplastic Anemia
 • Observation vs. Immunotherapy
• Severe Aplastic Anemia
 Matched Sibling Donor (<40 years of age)
 • HLA-matched transplant
 • Yes (or >40 years of age)
 • No (or >40 years of age)
 • Immunosuppressive therapy (IST)
 • if no response
 • High risk clone
 • Relapse – Reinitiate IST
 • Unrelated donor transplant
 • Experimental/Other therapy

Prospects for Better Management I
• HSCT
 • Recognition that bone marrow is the best stem cell source
 • Better matches
 • Better treatment
 • Larger more diverse registries
• Better immunosuppressive therapy (IST)
 • The addition of more potent or more agents has not proved beneficial
• We’re smarter
 • Do not support only in hopes of a spontaneous resolution of SAA
Prospects for Better Management II

- Better immunosuppressive therapy (IST)
 - The addition of more potent or more agents has not proved beneficial
 - High-Dose Cyclophosphamide remains controversial
 - Pro:
 - Response similar to ATG/CsA
 - Lower late event rate (relapse and clonal evolution were observed in NIH study)
 - Con –prolonged neutropenia:
 - High invasive fungal incidence (21 and 39% in treatment naïve and refractory patients, respectively)
 - Long hospitalization
 - Cost

Prospects for Better Management III

- Salvage Therapy
 - Rabbit ATG is more lymphocytotoxic and has been successful in salvaging some patients
 - Rabbit ATG is inferior to Horse ATG: 68% vs. 37% as frontline therapy – response 77% and complete remission 30%
 - Alemtuzumab (anti-CD52) has some value as salvage therapy but inferior to Horse ATG/CsA (only 19% response rate)

Prospects for Better Management IV

- Risk stratification to guide therapeutic choices
 - Pretreatment telomere length may correlate with:
 - Relapse
 - Clonal evolution
 - Short telomeres – 4 to 6 fold higher likelihood of clonal evolution (MDS or leukemia)
 - Survival
 - Patients with evidence of red cell production (reticulocytes) do better

Prospects for Better Management V

New Agents
- Eltrombopag (TPO-mimetic)
 - Responses
 - 9/12 no platelet transfusions
 - 6/12 improved hemoglobin (3 no longer needed transfusions of red blood cells)
 - 9/12 improved neutrophil count
- Daclizumab (Zenapax; anti-IL-2)
 - Response in moderate aplastic anemia (19/45)
- Alefacept (suppresses T-cell function)

SUPPORT BASIC RESEARCH