Aplastic Anemia: Understanding Your Diagnosis and Treatment Options

AAMDS Foundation
Winfred Wang, MD
St. Jude Children’s Research Hospital
June 24, 2017

Case

15 year old previously healthy white adolescent female referred to Hematology Clinic for evaluation of thrombocytopenia

History:
CBC obtained at primary care physician’s office
9/2016: WBC 7.7; Hb 11; platelet count 33
12/2016: WBC 3.7; Hb 10.6; platelet count 25

Past Medical History: Born FT by uncomplicated C-section for breech position. No hospitalizations or recurrent infections. Normal development. Immunizations up to date.

Medications: Lisdexamfetamine, Nu-Iron

Family History: No known bleeding disorders, anemia, thrombocytopenia, childhood cancers.

Social History: No full siblings. Jehovah’s witness.

Case

Exam: Ht 171 cm (92%), Wt 51.1 kg (45%), Normal except for one small bruise on anterior left leg
No dysmorphic features, congenital lesions, radial ray or nail abnormalities

Labs:
4.3 > 9.6 < 18, MCV 112, ANC 1800, ARC 56k
HbF 9.4% (elevated)
B12 704 pg/mL, Folate > 22.3 ng/mL (normal)
Peripheral blood smear consistent with pancytopenia

Case

Further testing:
CMV, EBV, Hepatitis A/B/C, Parvovirus, HHV6 negative
Normal chromosome breakage studies
Normal telomere lengths
PNH screen with 10% neutrophil clones and 8% monocyte clones
Shwachmann-Diamond gene sequencing negative

Bone marrow aspirate/biopsy

Hypocellular marrow 5-30%, normal cytogenetics
Diagnosis: Acquired Idiopathic SAA

Treatment:
- Horse anti-thymocyte globulin (ATG) x 4 days
- Methylprednisolone/Prednisone x 10 days
- Cyclosporine A twice a day
- Eltrombopag (50 mg/day beginning day 4)

Possible Mechanisms

1. Direct progenitor cell death due to marrow toxins
2. Underlying HSC abnormality
 - Post immunosuppression, low stem cell #s persist and macrocytosis may not return to normal
 - Late clonal abnormalities
3. Immunologic destruction of hematopoietic stem cells
 - Clinical response to immunosuppressive therapies
4. Abnormal stromal microenvironment inhibiting hematopoiesis

Epidemiology

- **Incidence:** ~ 2 per million per year
- **Peaks at ages 15-25 years and > 60 years

Etiologies

- Careful and thorough H&P
 - Bleeding, fatigue, serious infections
 - Steatorrhea, diarrhea
 - FH blood disorders, malignancies, hepatitis, congenital anomalies, etc.
 - Developmental history
 - Meds, environment exposures, infections

Diagnosis

- **History**
 - Petechiae, bruises, pallor, oral sores
 - Lymphadenopathy, hepatosplenomegaly
 - Growth curves, short stature
 - Congenital anomalies esp. radial ray abnormalities
 - Hyper/hypopigmented areas, dystrophic nails

- **Physical Exam**
 - Basic labs: CBC with diff, retic, PBS +/- HbF

Aplastic Anemia: Definitions

<table>
<thead>
<tr>
<th>ANC*</th>
<th>Platelets</th>
<th>ARC*</th>
<th>BM cellularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500/μL</td>
<td>< 20,000/μL</td>
<td>< 40,000/μL</td>
<td>< 25% for age</td>
</tr>
</tbody>
</table>

2 out of 3 blood count criteria

- *ANC = absolute neutrophil count
- *ARC = absolute reticulocyte count

- Very Severe Aplastic Anemia (vSAA): ANC <200/μL
Treatment Algorithm

Antimicrobials as needed
Prompt evaluations for neutropenia and fever
+/- G-CSF & GM-CSF
Restrictive transfusion thresholds
Iron chelation as needed

Supportive Care

Matched Related Donor Transplants

Conditioning
- Cy-ATG
- Cy alone
Graft Source
- Prefer BM > PBSC or UCB
- Standard care for GVHD prophylaxis
- Potentially equivalent efficacy, Continue ≥ 6 months post HCT

Engraftment rate 96%, OS 91%
No difference in OS, graft failure, or GVHD
Improved OS for BM (85%) vs PBSC (73%) grafts

OS 95%, aGVHD 2.3%, cGVHD 6.8%
5% ≤ 14 yrs, 32% ≥ 15 yrs
Mismatched unrelated donor
- Retrospective data with reasonable outcomes
OS (2 yr) 78% for 8/8, 60% for 7/8

Thrombopoietin (TPO)

Most potent regulator of megakaryopoiesis and thrombopoiesis
Binds to receptor (MPL) on hematopoietic stem cells and megakaryocyte colony-forming units (CFU-MK)
Stimulates megakaryocytic maturation, increases megakaryocyte size and ploidy
rh-TPO in cancer patients on chemotherapy increases platelet count, but also causes antibodies that cross-react with endogenous TPO

Immunosuppressive Treatment

4 months
10 yrs
10 yrs

Most potent regulator of megakaryopoiesis and thrombopoiesis

• Response to IST typically starts at ~ 1-3 months
• ATG + CSA > OR (but not OS) compared to ATG
• Horse ATG > Rabbit ATG for OR and OS
• Slow CSA wean

Predictors of response to IST
- SAA > SAA
- Younger age
- Higher Retic and ALC
- Quicker treatment
Eltrombopag

- Binds to transmembrane domain of MPL
- Rapidly absorbed after oral administration
- Should not be taken within 4 hour of food rich in cations such as Ca++
- Metabolized in liver, \(T_{1/2} = 21-32 \) hours
- Clearance 33-52% lower in Asians; therefore starting dose approximately \(\frac{1}{2} \) in Asians (in some trials)

Eltrombopag and refractory aplastic anemia

- Phase 2 study in adults with aplastic anemia refractory to immunosuppression (IS)
- \(N = 25 \); median age = 44 years (18-77)
- Eltrombopag dose: 50 → 150 mg/d x 12 weeks
- 11/25 (44%) had response in at least one lineage at 12 weeks
- 9 no longer needed platelet transfusion; 3 no longer needed PRBC transfusion; 9 had increase in ANC
- Conclusion: eltrombopag was associated with multilineage response in some patients with refractory SAA
- Follow-up study: 40% response rate

Eltrombopag and Improved Hematopoiesis in Refractory Aplastic Anemia

- Phase 1-2 study of immunosuppression + eltrombopag in previously untreated patients with severe aplastic anemia (SAA)
- Patients (\(N = 92 \)) consecutively enrolled in 3 cohorts; median age = 32 years (3-82)
- Primary outcome = CR at 6 months
- Secondary outcomes = OR, survival, relapse, clonal evolution
Results

- CR at 6 mo. = 32%, 26%, 58% in cohorts 1, 2, and 3
- OR at 6 mo. = 80%, 87%, 94%
- In historical controls, CR = 10% and OR = 66%
- Survival = 97% at median follow-up of 2 years
- Relapse and clonal evolution similar to historical experience
- Toxicity: severe rash leading to discontinuation of eltrombopag in 2 patients
- Conclusion: Addition of eltrombopag to immunosuppression is associated with markedly higher rate of hematologic response in patients with SAA

Treatment Algorithm

NAPAAC/Novartis: Study Objectives

- 1st: Characterize the pharmacokinetics of eltrombopag at steady state in refractory, relapsed or previously untreated patients with SAA
- Key 2nd: Safety and tolerability; efficacy (overall response rate)
- Other 2nd:
 - Platelet and RBC transfusion independence
 - Hematologic counts, BM cellularity
 - Clonal evolution to PNH
 - Acceptability and palatability

Summary

- Eltrombopag is a promising new agent for improving the response to upfront immunosuppressive treatment in SAA
- Eltrombopag is of benefit for some patients that have refractory or relapsed SAA
- However, the improving results from alternative hematopoietic stem cell transplants must also be considered in treatment decisions