NEW DIRECTIONS IN APLASTIC ANEMIA: WHAT’S ON THE HORIZON?

Amy E. DeZern, MD, MHS
Assistant Professor of Oncology and Medicine
The Johns Hopkins University School of Medicine

Aplastic Anemia is Bone Marrow Failure

- The bone marrow is the spongy stem cell tissue that produces the blood:
 - Red cells
 - White cells (neutrophils)
 - Platelets
- When all three cell lines are low → Pancytopenia

Classification of AA: Camitta Criteria

<table>
<thead>
<tr>
<th>Peripheral Blood Cytopenias</th>
<th>Non-severe (Moderate) aplastic anemia (not meeting criteria for severe disease)</th>
<th>Severe aplastic anemia (any 2 of 3)</th>
<th>Very-severe aplastic anemia (meets criteria for severe disease and absolute neutrophils < 200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow cellularity</td>
<td>< 25%</td>
<td>< 25%</td>
<td>< 25%</td>
</tr>
<tr>
<td>Absolute neutrophil count</td>
<td>< 500 / µl</td>
<td>< 200 / µl</td>
<td></td>
</tr>
<tr>
<td>Platelet count</td>
<td>< 20,000 / µl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reticulocyte count</td>
<td>< 1.0% corrected or < 60,000 / µl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classification of AA: Camitta Criteria

<table>
<thead>
<tr>
<th>Peripheral Blood Cytopenias</th>
<th>Non-severe (Moderate) aplastic anemia (not meeting criteria for severe disease)</th>
<th>Severe aplastic anemia (any 2 of 3)</th>
<th>Very-severe aplastic anemia (meets criteria for severe disease and absolute neutrophils < 200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow cellularity</td>
<td>< 25%</td>
<td>< 25%</td>
<td>< 25%</td>
</tr>
<tr>
<td>Absolute neutrophil count</td>
<td>< 500 / µl</td>
<td>< 200 / µl</td>
<td></td>
</tr>
<tr>
<td>Platelet count</td>
<td>< 20,000 / µl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reticulocyte count</td>
<td>< 1.0% corrected or < 60,000 / µl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TREATMENT LINGO
Stem Cell Transplant

Types of Transplant
- Depends on:
 - Stem cell source
 - Donor relationship to patient
 - Conditioning regimen

Hematopoietic stem cell (HSCT)
- Hematopoietic stem cells divide to form more blood-forming stem cells
- Or they mature into 1 of 3 types of blood cells—white or red blood cells and platelets
- THE GRAFT = source of stem cells
- Sources of stem cells
 - BMT: bone marrow transplant
 - PBSC: peripheral blood stem cell transplant
 - UC: umbilical cord transplant
- Cells from any of these sources can be used in transplants

Donors
- Allogeneic- patients receive stem cells from another person
 - Related
 - Full matched sibling
 - Half matched sibling
 - Unrelated
 - Mismatched
- Autologous- patients receive own stem cells—*not in AA*
- Syngeneic- patients receive stem cells from identical twin

Conditioning regimens
- Also called preparative regimens
 - Nonmyeloablative = “mini”
 - Standard of Care with matched siblings
 - Antithymocyte globulin (ATG) +/- cyclophosphamide
 - Fludarabine + Total body irradiation (TBI) + cyclophosphamide
 - Alemtuzumab (Campath) + TBI + cyclophosphamide
 - Myeloablative = “maxi”
 - Used infrequently
 - Facilitate engraftment
 - Infertility concerns

Graft versus Host Disease (GVHD)
- Transplanted immune cells from the donor attack the patient’s body cells
 - Acute (<100 days)
 - Chronic—can decrease long term survival
 - Can affect nearly any organ
 - SKIN
 - GUT
 - LIVER
 - Lungs
 - Eyes
 - Vagina
HOW DO WE DECIDE?

Allogeneic BMT for SAA
- Affected by
 1. Age of patient (recipient)
 2. Availability of donor
- These are the 2 most important prognostic factors for survival
- Children and adults approached differently in this context

Young patients (<30-40 years Old) Severe Aplastic Anemia

<table>
<thead>
<tr>
<th>With HLA matched sibling</th>
<th>Without HLA matched sibling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematopoietic Cell Transplant</td>
<td>Immunosuppressive Therapy</td>
</tr>
<tr>
<td>Response</td>
<td>Relapse</td>
</tr>
<tr>
<td>Alternative donor transplantation versus repeat immunosuppression</td>
<td></td>
</tr>
<tr>
<td>Clinical follow up</td>
<td>Assessment of late effects</td>
</tr>
<tr>
<td>No Response</td>
<td></td>
</tr>
</tbody>
</table>

Bone marrow transplant
- Children, adolescents and young adults (age of <30-40 years) with SAA who have an HLA-matched sibling donor should proceed directly to BMT as this is potentially curative
- Marked reduction in the risk of relapse
- Decreases risk for late clonal disorders such as MDS and PNH

➤Ask your doctor about typing ASAP

HLA Typing (Human leukocyte antigen)
- Method to determine how closely the tissues from one person match the tissues from another person
- Requires a blood test (or other body tissue) to do this
- “Blood type” is less important and different than HLA type
- Goal: for the 2 immune systems to NOT see each other as “foreign” and be less likely to attack each other
 - Siblings: 25% chance full match, 25% chance no match, 50% chance half match
 - Two unrelated people can be a good HLA match as well (“MUD”)
HLA Typing (continued)

- HLA matching is usually based on 8 or 10 HLA molecules (more is better match)
- HLA markers looked at for these minimum requirements are two A, two B, two C, and two DRB1 (DQ also done)

Questions you might be asked:
- What is the urgency? (APLASTIC ANEMIA)
- What is treatment plan?
- Search for an alternate donor if there is no family match?
- Insurance and contact information for patient/ potential donors is important

Older patients (>40 years Old) or No Suitable Donor

Severe Aplastic Anemia

- Immunosuppressive Therapy
 - Response
 - No Response
 - Clinical follow up
 - Alternative donor transplantation (or matched sibling) versus repeat immunosuppression
 - Assessment of late effects

Locasciulli A et al. Haematologica 2007;92:11-18

All outcomes improving with time

BMT compared to IST

- 10 year survival for BMT 73% and 68% for IST (data 1991-2002)
 - p=0.002
 - All outcomes improving with time

Langerak A et al. Haematologica 2007;92:11-18
ONWARD TO TRANSPLANT

What helps outcomes \(\rightarrow\) predictors of survival:

- Recipient age of less than 16 years
- Matched sibling donor
- Early BMT (time from diagnosis to BMT of less than 83 days)
- Using bone marrow source (over peripheral stem cells)
- Non-radiation conditioning regimen (ATG, Campath)

Locasciulli A et al. Haematologica 2007;92:11-18

Survival is better in children than adults

Locasciulli A et al. Haematologica 2007;92:11-18

Why we do not rush to BMT in older patients

Survival is less

GVHD is more

Sangiolo et al. BBMT 2010

Conditioning: ATG+CY

- Antithymocyte globulin (ATG)- added to prevent graft rejection, lower rates of cGVHD
 - Big part of immunosuppressive even if no BMT
- Cyclophosphamide- immunosuppressive but not marrow ablative
 - Cardiac toxicity
 - Hemorrhagic cystitis (bladder bleeding)
 - Alopecia (hair loss)
- Radiation has longer term toxicities and is probably not needed

Chalmelin et al., Blood 2009
Storb et al., BBMT 2001
Storb et al., Blood 1997
Bone marrow source is better than Peripheral blood

- **GVHD**
 - More GVHD if older and use PBSC

- **Overall survival**
 - Higher survival if younger and use bone marrow

HIGH DOSE CYCLOPHOSPHAMIDE

Another form of IST

- High dose = 50mg/kg daily for 4 days (similar to conditioning regimen for BMT)
- 66 patients studied at Hopkins
 - 44 treatment naïve (Response: 31/44 = 71%)
 - 23 refractory to standard ATG/CSA
- Median follow-up 63 months
- Median time to response: 5 (IQR, 2-10) months
- Study at NIH stopped due to toxicity from HiCY
- Even moderate doses of CY may be too toxic from fungal infections

OLDER PATIENTS (>40 years OLD) or NO SUITABLE DONOR

Severe Aplastic Anemia

- Immunosuppressive Therapy
 - Response
 - No Response
 - Alternative donor transplantation (or matched sibling)
 - Clinical follow up
 - Relapse

UNRELATED DONOR OR ALTERNATIVE DONOR BMT

- The sooner, the better after relapse/ refractoriness noted
- Bone marrow still the best source
- Similar conditioning regimens
- GVHD currently TOO HIGH
- Often in setting of clinical trial (as results need improvement)

URD IN CHILDREN

- 44 children in UK (40 s/p IST)
 - Fludarabine, CY, Alemtuzumab conditioning
 - Overall survival and failure free survival was 95%
Adult URD

- Survival now >75%
- Similar conditioning regimens- may add TBI

Haploidentical transplants

- Reserved for refractory SAA
- Should be done in a specialist center
- Usually performed in setting of clinic trial
- Similar results to matched sib BMT for leukemia
- ~Everyone has a donor
 - Including those with little chance of match in unrelated registries (e.g., ethnic minorities)
 - Average person in US has 4.5 HLA haploidentical donors

Haplo transplants done

- 12 patients done in Korea (3 were treatment naïve) using nonmyeloablative conditioning
 - All 12 alive and transfusion independent at 14 month
 - 3 patients had to have 2nd BMT due to failure to engraft
 - 2 had cGVHD grade 4
- 19 patients done in China for refractory disease using myeloablative conditioning
 - All engrafted
 - Half of patients had cGVHD grade 3-4
 - 65% alive at >2 years
 - Clinical trial open at Hopkins to use haplo donor in adults and children
 - 2 haplos alive and well >1 year without GVHD

Umbilical Cord Transplants

- Survival is still lower
- Conditioning regimens more varied
 - CY/Flu/ TBI
 - Melphalan/Flu/ TBI
- Japanese study
 - 12 adult patients
 - 11/12 engrafted
 - survival 10/12 median 36 mos
 - cGVHD still too high
- Clinical trials open in US

GVHD

- Treated with forms of immunosuppression
- Can decrease quality of life
- Can cause infections while immunosuppressed
- Can be fatal
- Increased risk with
 - Non matched sibling donor
 - Non bone marrow stem cell source

GVHD (continued)

- Prophylaxis- usually up to 1 year after BMT
 - Methotrexate
 - Cyclosporine
 - Mycophenolate mofetil
 - Tacrolimus/ sirolimus
 - Alemtuzumab pre transplant
 - Cyclophosphamide post transplant
- Treatment
 - Steroids
 - PUVA
 - Tacrolimus
GVHD results improving over time

- Descriptive analysis ~1700 patients with BMT 1995-2006 from CIBMTR
 - Varied regimens for prophylaxis
 - aGVHD 17% for MSD vs 44% URD
 - cGVHD at 1 year 20% for MSD vs 37% URD

- Study of patients by EBMT up to 2001
 - cGVHD (extensive) at 1 year 79% URD
 - GVHD prophylaxis with MTX alone increased this risk
 - Less with ATG/CY conditioning compared to conditioning with radiation

Ades et al. Blood. 2004 Apr 1;103(7):2490-7

Advantages of Post BMT CY for Haplos

- Similar results to matched sib BMT, but virtually everyone has a donor
- No delay to BMT - many patients cannot wait 3-4 months for MUD
- Excellent immune recovery - high Cy spares memory/quiescent lymphs
- Helpful for malignant diseases but especially suited for genetic and autoimmune disease =Aplastic Anemia

Post Transplant CY Hopkins 1960s-present

- CY post alloBMT prevented GVHD in mice (Santos/Owens – 1960s)
 - Only high doses (150-300 mg/kg) effective
 - Lower doses - little activity

- Standard Hopkins prophylaxis (1975-1984)
 - Low dose - 7.5 mg/kg/d x 4 (MTX schedule)
 - Randomized trial - less effective than CsA

- High dose Cy (200 mg/kg) prevents GVHD after haploBMT in mice (Luznik/Fuchs 2001)

Following chimerism is important

- Chimerism is what % of the donor the recipient becomes → goal 100% donor
- Can be checked in blood and marrow
- Progressive mixed chimeras are at increased risk of late graft rejection when immunosuppression is withdrawn
- Monitoring after transplant is important

Supported Care

- Central Venous Catheter
 - considered for all patients with AA, given the frequency of phlebotomy, transfusions, and administration of therapeutic medications (PICC, Hickman, Mediport)

- Blood transfusions
 - Irradiated – prevent transfusion associated GVHD
 - Leukofiltered – reduce viral infections and prevent alloimmunization

- Growth factors
 - May provide clinical benefit but do not induce disease remissions

- Infections
 - Granulocyte transfusions –controversial
 - Antibiotics = important

Important Details

Supportive Care

Quellen K et al. Haematologica 2009.
Late effects after BMT

- Overall less than ~10% in series from CIBMTR, Seattle, EBMT
- More if unrelated donor than matched sibling
- More if exposed to total body irradiation
- More if +GVHD

- Avascular necrosis (up to 6%) (also after IST)
 - Hip or other persistent joint pain should prompt imaging to evaluate for avascular necrosis
 - Osteopenia may be seen if high steroid use

- Cataracts (up to 5%)
 - Routine ophthalmology exams will pick up

- Growth disturbance (up to 7%)

- Low thyroid levels (up to 6%)
 - Checked with bloodwork
 - Replacement hormone can be given

- Secondary malignancy (up to 2%)
 - Solid tumors
 - Lymphomas

- Infertility (up to 10%)

Fertility Preservation

- Fear of infertility – not a reason to withhold HSCT

- Female and male survivors after HSCT demonstrate fertility
 - Usually after non-myeloablative conditioning with ATG/cyclophosphamide

- Temporary ovarian and testicular dysfunction is common after cyclophosphamide
 - Fertility can return over the longer term (most pregnancies 5-10y post BMT)

Future Directions

- More use of alternative donor transplants
 - Expand the available donor pool

- Additional research on best conditioning regimen to maximize engraftment

- Techniques to encourage rapid hematopoietic reconstitution
 - G mobilized marrow from donor

- Improvements in prophylaxis against GVHD

Active Research

- >100 open clinical trials on clinicaltrials.gov (as of 8/2013)
 - Encourage your doctor to feel comfortable looking for all possible treatment options for you

- Transplant trials
 - Haploidentical BMT trial at Hopkins
 - Fludarabine+cyclophosphamide+TBI with double umbilical cords

- Non transplant trials
 - Eltrombopag
 - Alemtuzumab

Eapen et al. BMJ 2000;111:754-760
Loren et al, BMJMT 2011;17:157-166
Konopacki et al. Haematologica 2012;97:710-716
Summary

- Efficient HLA typing is important
- Upfront therapy for SAA in young patient is matched sibling transplant with ATG/CY
- Older patients or those without donor do immunosuppression with ATG/CsA first
- Bone marrow source from donor is best
- Late effects are manageable
- Active research ongoing

Acknowledgements

Robert Brodsky, MD
Mary Armanios, MD
Rick Jones, MD
Donna Dorr, RN
Hematologic Malignancies group

Our Patients