Overview

• What is aplastic anemia?
• Causes of aplastic anemia
 • Important lab tests
• Non-transplant treatment options
 • Supportive care options

Aplastic Anemia: Current Thinking on the Disease, Diagnosis and Non-Transplant Treatment

Akiko Shimamura MD PhD
Fred Hutchinson Cancer Research Center
Seattle Children’s Hospital
University of Washington

AA&MDS International Foundation
September 7, 2013

Overview

Neutrophils

• Also called: granulocyte, “poly”, PMN, “seg”

• Function: Fights infection (bacteria and fungus) by engulfing/eating them

• ANC: Absolute Neutrophil Count
 – White blood cell count (WBC) X % neutrophils

Neutrophils

• “neutropenia”: ANC <1,500

• Generally do not start to see increased infection risk until ANC falls below 1,000

• Generally, the lower the ANC, the higher the potential risk of infection.
 • Mild: 500-1000
 • Moderate: 200-500
 • Severe: <200

Images courtesy of Dr. Min Xu, Dept of Pathology
Seattle Children’s Hospital, Seattle, WA
Platelets

- Function: Help the blood to clot

Platelets

- Thrombocytopenia: platelet count <150,000
- Bleeding risk generally starts to increase when platelet counts fall below 100,000.
 - Bleeding risk
 - 100,000-50,000: Mildly increased
 - 50,000-20,000: Moderately increased
 - <10,000-20,000: Significantly increased
- Need to assess bleeding risk within clinical context (eg: surgery, risk of trauma, location of bleed)

Red blood cells

- Function: Carry oxygen from the lungs to other organs/tissues
- “Hematocrit” and “Hemoglobin” provide a measure of the red blood cells. Normal levels vary with age and gender.
- “Reticulocytes” are young, newly produced red blood cells

Aplastic anemia

Primary marrow disease
- Acquired
 - autoimmune
 - idiopathic
 - post-hepatitis
- Inherited
 - Fanconi anemia
 - Dyskeratosis congenita
 - Shwachman-Diamond syndrome
 - Aegakaryocytic thrombocytopenia
 - Diamond-Blackfan anemia
 - GATA-2
- Secondary
 - infection
 - medications
 - toxins
 - other disease

Severe Aplastic Anemia (Camitta criteria)

- Two of the following:
 - ANC<500 (<200=“very severe”)
 - Platelets <20,000
 - Low reticulocyte count (corrected for hemoglobin)
- Marrow cellularity <25%
- Moderate aplastic anemia: variable definitions

Laboratory tests

- Complete blood count (CBC) with differential
- Bone marrow biopsy
 - Cellularity
- Bone marrow aspirate
 - Morphology
 - Culture
 - Cytogenetics
Cytogenetic clones

Cytogenetics

Monosomy 7

Fluorescent in-situ hybridization (FISH)

Normal (2 copies) Abnormal (one copy)

Paroxysmal nocturnal hemoglobinuria (PNH)

- Clinical features:
 - hemolytic anemia (red blood cell destruction -> anemia)
 - thrombosis (blood clots)
 - aplastic anemia

PNH (cont)

- GPI anchors other proteins to the cell surface
- PNH cells are deficient in all GPI-anchored cell surface proteins (eg: CD59 and CD55, which protect cells from complement)
PNH

- Small clone size typically asymptomatic
- Unclear whether presence of small PNH clone affects outcomes
- Treatment approach for AA with asymptomatic PNH clone is generally the same

Diagnostic Workup

- Why should we test for inherited bone marrow failure syndromes?
 - Poor response to ATG/Cyclosporine (CyA)
 - Standard transplant regimens may be highly toxic
 * Require reduced intensity conditioning regimen
 - Inform donor choice
 - Family counseling (eg: cord blood banking)

Diagnostic Workup

- Look for clues to inherited bone marrow failure syndrome:
 - Clinical history
 - Family history
 * Low blood counts, malignancies at a young age, excessive toxicity with chemo/radiation, physical disorders
 - Physical exam

Laboratory tests

- Paroxysmal nocturnal hemoglobinuria
- Fanconi anemia (children, young adults)
- AST, ALT, GGT, bilirubin (liver)
- BUN, creatinine, electrolytes (kidney)
- Tests for infections
- Tests for immune/rheumatologic disorders
- HLA testing of patient and siblings
- Telomere length testing?

Telomeres

Telomeres shorten with age

Telomere length and AA

- Very short telomeres are associated with an inherited bone marrow failure syndrome (dyskeratosis congenita)
- Shorter telomere length:
 - Decreased response to ATG/CyA
 - Increased risk of relapse
 - Increased risk of clonal progression (MDS)

Scheinberg et al. JAMA 2010; 304: 1358-1364

When to treat?

- Severe or very severe aplastic anemia
- Transfusion-dependent cytopenias
- Note: Limited data on whether it is advantageous to treat patients with moderate AA. Some are stable and some improve spontaneously. Generally work up and observe.

BMT vs ATG/CsA?

- Survival
- Short-term versus long-term complications
- BMT is curative

ATG: Anti-thymocyte globulin

Higher response rates to horse ATG over rabbit ATG.

ATG: toxicities

1. During infusion: Fevers, shaking chills, rash/hives, low blood pressure, difficulty breathing
2. 2-3 weeks post-infusion: serum sickness. Fever, rash, pain in muscles/joints, abdominal pain/diarrhea, neurological symptoms
3. Blood counts typically fall for the first few weeks (require intensive transfusion support)
4. Immunosuppression
Cyclosporine (CsA): toxicities
- High blood pressure
- Kidney toxicity
- Low magnesium
- Increased body hair/facial hair
- Swollen gums
- Neurologic toxicities (eg: seizure)
- Immunosuppression

Major life-threatening complications of ATG/CsA
- Infection
- Fungus
- Bacteria
- Bleeding (eg: stroke)

Goal of ATG/CsA
- Blood counts often fail to return to normal
- Goals:
 - transfusion-independence
 - low risk of severe, life-threatening infections
- (Responses typically seen after ≈3-6 months after initiation of treatment. Some improvement may continue even 1 year post-therapy.)

Complications after ATG/CsA
- Failure to respond (refractory disease): 25-30%
- Relapse after initial response: 30%
- Clonal evolution (10-15% at 10 years)
 - Prognosis varies with specific cytogenetic clones

Pediatric aplastic anemia: >70% response to ATG/CsA
(Adults: 60-70% response rate)

Pediatric aplastic anemia: survival after ATG/CsA
(Adults: 70-80%)
Upfront treatment

Other immunosuppressive agents failed to improve response, relapse or clonal evolution:

- Sirolimus (Scheinberg et al. Haematologica. 2009; 94: 348-354)

G-CSF

No benefit for hematologic response or survival in randomized prospective trial

Association with clonal evolution in some retrospective studies

Consider in patients with active infection, persistent fever, or persistently low ANC

Cyclosporin taper

More rapid taper if serious side effects with CsA

Counts may continue to improve over long term

Treatment of relapse

- Often responds to re-starting or increasing dose of cyclosporin

- May require re-induction with ATG/CsA or consideration of bone marrow transplant
Refractory AA
Persistence of severe AA 6 months following initiation of ATG/CsA
Consider unrelated donor bone marrow transplant
If no suitable donor, consider:
 Second round of ATG/CyA (30-50% response)
 High dose cyclophosphamide (on study protocol)

Alemtuzumab (Campath)
- Antibody directed against CD52 which is found on the surface of lymphocytes
- Used in autoimmune diseases, lymphoid cancers, and transplants
- Prospective trial at NIH (Scheinberg et al., Blood 2012; 119: 345-354)
 Hematologic response at 6 months:
 Treatment-naïve: 16 patients
 Non-responders to ATG/CsA: 27 patients
 Relapse after ATG/CsA: 25 patients

Responses to Alemtuzumab

![Bar chart showing responses to Alemtuzumab](chart)

Eltrombopag (Promacta)
- Oral medication, stimulates the thrombopoietin receptor (c-MPL) which is on the surface of megakaryocytes (which make platelets) and blood stem cells
- Olnes et al. NEJM 2012; 367: 11-19
- Treated 25 patients refractory to ATG/CsA for 12 weeks
 - 11 (44%) had significant improvement in at least one blood cell type (many multilineage)
 - 9 became independent of platelet transfusions
 - 3 became independent of rbc transfusions
 - 9 had improved neutrophil counts (median increase 1350)

High dose cyclophosphamide
- Comparable response rates compared to ATG/CsA
- Lower relapse rates and lower rates of clonal evolution?
- High rates of fungal infection
- Prolonged neutropenia and very delayed responses requiring intensive supportive care
- Currently recommended on investigational protocols

Supportive Care
Supportive care: anemia

- Transfusion support (red cells)
 - Indications: Symptomatic anemia (fatigue, exercise intolerance, rapid heart rate and breathing, headache, light-headedness, poor growth)
 - Risks:
 - Allosensitization: patient develops antibodies against the transfused red cells or platelets such that transfused cells are rapidly destroyed
 - Iron overload secondary to red cell transfusions
 - Initiation of subcutaneous deferasirox infusions
 - Oral iron chelating medication (Exjade) is now available
 - Transfusion reaction
 - Infection

Clinical Complications of Iron Overload

- Liver disease with fibrosis and cirrhosis
- Cardiac failure, arrhythmias
- Hypopituitarism:
 - Central hypogonadism
 - Growth hormone deficiency
 - Central hypothyroidism
- Poor growth
- Diabetes mellitus
- Primary hypothyroidism
- Primary hypogonadism
- Hypoparathyroidism

Supportive care: thrombocytopenia

- Transfusion support (platelets)
 - Indications: Symptomatic (bleeding, increased bruising)
 - Prophylaxis: prior to surgical procedures history of recurrent or serious bleeding

Key points:

- For bleeding, evaluate other potential causes (eg: vitamin K deficiency, liver dysfunction)
- Anti-fibrinolytic agents may be helpful (eg: Amicar)

Follow-up post-treatment

- Monitor blood counts
- Post-therapy bone marrow exam
- ?Regular bone marrow exams thereafter?
- Check marrow if blood counts progressively fall without apparent cause

Iron Chelation Therapies