Targeting Innate Immunity as a Driver of the MDS Phenotype

Alan List, MD
H. Lee Moffitt Cancer Center & Research Institute
Tampa, FL
Age-Related Clonal Hematopoiesis (CHIP) is Linked to Risk of Inflammatory Co-morbidities

- Whole exome NGS on PB of 17,182 persons; median f/u 8 years
- 805 somatic mutations found in 73 genes from 746 (4.3%) individuals
- Majority involved 1 mutation: DNMT3A (n=403), TET2 (72), & ASXL1 (62)
- Median VAF was 0.09, ~18% of WBC
- Risk of myeloid malignancy was markedly increased in mutation carriers [HR 11, 95% CI 3.9-33] & higher VAF
- CHIP was associated with greater risk for inflammatory morbidities: Type 2 DM [OR 1.3, 95% CI 1.1-1.5], CAD [HR 2.0, 95% CI 1.2-3.4] or stroke [HR 2.6, 95% CI 1.4-4.8]

Inflammaging: TLR Signaling Skews HSPC Toward Myelopoiesis with Senescence

- Age-related decline in HSPC homeostasis is linked to TLR-induced inflammatory cytokines (e.g., IL-6, IL-1β, TNFα) by MSC.
- TLR ligation drives GMP expansion in the absence of myeloid GFs, while reducing lymphocyte production by CLPs contributing to immunosenescence.
- Chronic TLR activated HSC lose quiescence causing HSC depletion.

Innate Immunity
An Emerging Pathogenetic Driver in MDS

- Chronic inflammation is linked to MDS predisposition with innate immune activation implicated in hematopoietic senescence & MDS pathobiology

- MDS HSPC overexpress TLR-2, -4 & -9, with TLR4 implicated in progenitor apoptosis & cytopenias (Hoffman W, Blood 2002; Wei Y, Leukemia 2013)

- TLR4 signaling intermediates, \textit{TRAF6} & \textit{TIRAP} are up-regulated or amplified in CD34+ progenitors (Gondek LP; Starczynowski DT, Blood 2008)

- TLR signaling is constitutively active in del5q MDS d/t \textit{miR-145} & \textit{miR-146} allelic deletion with \textit{TIRAP/TRAF6} de-repression (Starczynowski DT, Nat Med 2010;16:49)

- The TLR4 adaptor kinase IRAK is overexpressed & hyperactive, driving MDS HSPC expansion (Rhyasen, Cancer Cell 2013)

- Our recent studies implicate expansion of Myeloid Derived Suppressor Cells as key innate immune effectors of ineffective hematopoiesis (Wei S, JCI 2013)

\textsuperscript{^\text{Kristinsson SY, et. al. JCO 2011;29(21):2897–2903.}}

\textit{TRAF6}: tumor necrosis factor receptor- associated factor-6; \textit{TIRAP}: Toll-interleukin-1 receptor domain-containing adaptor protein.
Myeloid-DerivedSuppressor Cells (MDSC)

Immature myeloid cells (IMC)
- Mouse MDSC: CD11b+Gr-1+ (+B220, CD31); Human: Lin-HLA-DR-CD33+

Expand with age, infection, inflammation, and neoplasia.
Induce tumor immune tolerance & T-reg cell expansion.
Elaborate multiple soluble effectors: ROS, NO, and Arginase; VEGF, TNFα, TGF-β, IFN, IL-6, IL-10; & granzyme granules
MDSC expansion and activation driven by TLR ligands (e.g., DAMP signals)

*DAMP: danger-associated molecular pattern.
MDSC are Markedly Expanded in the BM of Lower Risk MDS Patients

MDS MDSC are Genetically Distinct from the MDS Clone

- MDSC lack both cytogenetic abnormalities & gene mutations intrinsic to the MDS clone
- Absence of genetic abnormalities indicates that MDS MDSC derive from non-neoplastic HSPC & precede emergence of MDS clones

MDS-MDSC Suppress Autologous Hematopoiesis

Granzyme Mobilization

Apoptosis

CD33 (red), granzyme B (green)

BFU-E

Number of BFU-E

p<0.001

Number of Colonies

Unsorted MDSC+ MDSC-

BFU-E CFU-GM
The ITIM Signaling Receptor CD33-SIGLEC3 is Over-expressed in MDS-MDSC

MDSC CD33 Surface Density

p<0.005

*Immunoreceptor tyrosine-based inhibition motif (ITIM);
Sialic Acid-binding Ig-Type Lectin

Promotes Myeloid Differentiation & Maturation

Blocks Differentiation & Maturation
S100A9 is the Native Ligand for CD33

CD33-IgG₁ Fc Fusion

CD33 Binds S100A9

Human S100A9

- S100-Calcium binding protein A9, is also known as migration inhibitory factor-related protein 14 (MRP14) or calgranulin B
- A calcium & zinc binding protein that plays a key role in the regulation of inflammation & innate immune response
- Predominant in myeloid cells & promotes membrane assembly & activation of NADPH oxidase
- S100A9 is the principal transcriptional driver of S100A8 (MRP8) & forms homo- & hetero-dimers with S100A8 (calprotectin)
- S100A9 & calprotectin function as alarmins or danger-associated molecular pattern (DAMP) signals & ligands for TLRs
- S100A9/8 increases with inflammation, aging in parallel with MDSCs and promotes insulin resistance & atherosclerosis*.

CD33 is Indispensable for S100A9 Inflammatory Cytokine Induction

Normal donor BM-MNC’s RAGE, TLR4, CD33, or their combination were blocked prior to culturing cells with or without 1 μg of S100A9 for 48 hours followed by assessment of IL-10 gene and protein expression (qPCR – top, ELISA on the bottom).
S100A9 is Increased in Lower Risk MDS BM-MNC & BM Plasma

BM Plasma Concentration by IPSS

![Graph showing BM Plasma Concentration by IPSS](image)

- Normal: 0.4 ug/mL
- Low Risk: 17.0 ug/mL
- High Risk: 11.9 ug/mL

Intracellular S100A9

- CD34+CD38
- CD34+CD38*
- CD33+
- CD71+

![Histograms showing Intracellular S100A9](image)

- Normal vs MDS comparisons:
 - CD34+CD38: 3.3 vs 22.4
 - CD34+CD38*: 15.6 vs 39.4
 - CD33+: 40.9 vs 67.0
 - CD71+: 4.8 vs 15.5

*Statistically significant difference
S100A9-Tg Mice Develop Trilineage Cytological Dysplasia Phenocopying MDS

A. Hypercellular marrow with megakaryocytic hyperplasia

B. Dysplastic megakaryocytes with single or hypolobation & increased micromegakaryocytes (dwarf megakaryocytes)

C. Hypogranulated and hyposegmented PMNs (pseudo-Pelger-Huet changes) and nuclear budding in erythroid precursors. (All cells are partially degenerated)

D. PAS stain highlights erythroid predominance

MDSCs (LIN-HLA-DR-CD33^{Hi}) are activated & profoundly expanded in the bone marrow of MDS patients. MDS-MDSCs are genetically distinct from the MDS clone, serve as cellular effectors of ineffective hematopoiesis via direct cytotoxicity to autologous progenitors, and suppress T-cell immune response. The TLR4/CD33 ligand S100A9 promotes both autocrine-reinforced MDSC activation, & paracrine mediated myeloid progenitor cell death. Constitutive expression of S100A9 in a transgenic mouse model is sufficient for development of MDS & T2D.
Pyroptosis: Caspase-1 Dependent Inflammatory Cell Death

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Apoptosis</th>
<th>Pyroptosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell lysis</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Cation pore activation</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Nuclear condensation</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DNA fragmentation</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Inflammasome assembly</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Caspase-1 activation</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Caspase-3 activation</td>
<td>+</td>
<td>late</td>
</tr>
<tr>
<td>Inflammatory cytokines</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
NLRP Inflammasomes

- Nucleotide-binding domain & oligomerization domain (NOD)-like receptor proteins (NLRP)
- Family of cytosolic pattern recognition receptors responding to danger signals triggering inflammasome formation
- NLRP3 (NALP3 or cryopyrin) forms a multiprotein complex by associating with ASC adaptor, which recruits Pro-Caspase-1 through its CARD domain
- Caspase-1 undergoes autocatalytic processing to yield two subunits that form the active caspase cleaving pro-interleukin-1 & -18

Two-Stage Induction of NLRP3 Inflammasome

PAMP denotes Pathogen-Associated Molecular Pattern; DAMP, Damage-associated Molecular Pattern or alarmin.

PAMP, DAMPs

TLR4 and IL-1R

DAMP, cation flux, ROS, cathepsin-B

NLRP, pro-Caspase-1

pro-IL-1β, pro-IL-18

Pyroptosis

Pore formation

Inflammatory molecules

DAMPs

P2X7, PANX1, TRPM2

Pore activation

NFκB

p50, p65

MyD88

IRAK1, IRAK4

TRAF6

priming

Assembly & Activation

Inflammatory stimuli

ASC

Caspase-1

p65

NLRP3

BCL-2, BCL-XL

TRPM2

P2X7

PANX1

IL-1β

IL-18

Pyroptosis Summary

- DAMP signals and oncogene mutations in MDS license a common redox-sensitive inflammasome platform to induce caspase-1-dependent pyroptotic cell death, inflammatory cytokine generation & β-catenin activation via NADPH-oxidase (NOX).
- NOX generated superoxide activates cation channels causing Ca^{++} influx and cell volume expansion.
- Neutralization of S100A9 in BM plasma or inhibition of the NLRP3 inflammasome suppresses pyroptosis, MDSC, ROS generation & nuclear β-catenin while restoring effective hematopoiesis.
- Strategies that neutralize S100A9, or inhibit inflammasome activation offer therapeutic potential in MDS.
Acknowledgements

Moffitt Cancer Center:
Ashley Basiorka
Dr. Kathy McGraw
Brittany Irvine
Dr. Thomas Cluzeau
Dr. Erika Eksioglu
Dr. Xianghong Chen
Dr. Sheng Wei
Dr. Eric Padron
Dr. Rami Komrokji
Dr. Lubomir Sokol
Dr. Nick Lawrence
Dr. David Sallman

Trinity College, Ireland:
Dr. Luke O’Neill

The University of Queensland, Australia:
Dr. Rebecca Coll
Dr. Matthew Cooper
Dr. Avril Robertson

Collaborators:
Drs. Seishi Ogawa & Masashi Sanada
Drs. Benjamin Ebert & Esther Obeng
Dr. Omar Abdel-Wahab