Clonal hematopoiesis of indeterminate potential and MDS

Siddhartha Jaiswal
AAMDS Meeting
3/17/16
Clonal evolution from birth to death
Might “pre-malignant” clones, bearing only the initiating lesion, be present in a much larger fraction of people than those with cancer?

Does the presence of these lesions increase risk for cancer, or other diseases?
Type 2 diabetes (T2D) exome sequencing project

22 population based cohorts in 3 consortia

~17,000 subjects:
- Unselected for hematologic or malignant phenotypes
- Half with T2D
- Multiple ancestry groups
- Median age 59
- Exome sequencing performed at the Broad Institute

Importantly:
- Buffy coat derived DNA!
- Prospective, longitudinal, with outcome data on some subjects
Type 2 diabetes (T2D) exome sequencing project

- BAMs from Picard alignment
- Run Mutect (OxoG) and Indelocator
- Make **pre-specified** variant calls for a panel of 160 genes known to be involved in myeloid and lymphoid malignancies
At least ten percent of everyone over the age of 70 has a detectable clonal mutation.
Commonly mutated genes in clonal hematopoiesis
Mutation effects

• DNMT3A
 – Frameshift, nonsense, and splice-site throughout coding sequence
 – Missense in key domains (methyltransferase, ADD, PWWP)
• TET2
 – Frameshift and nonsense throughout coding sequence
 – Very rare splice-site mutations
 – Missense in catalytic domains
• ASXL1
 – Frameshift and nonsense in exons 11 and 12
• JAK2
 – Constitutively activating mutation (V617F)
Most subjects had only 1 detectable mutation
Unlike other pre-malignant states, clonal hematopoiesis affects a large proportion of the affected organ. On average, ~18% of blood cells are part of the clone.
Mutations persist over time

17 variants in 13 persons were detectable 4 to 8 years later
Clonal hematopoiesis is associated with increased risk of hematologic malignancy

HR 11, 95% CI 3.9 to 33, p<0.001, adjusted for age, sex and T2D status
Clonal hematopoiesis antecedes myeloid and lymphoid malignancies

<table>
<thead>
<tr>
<th>Age at sampling</th>
<th>Diagnosis</th>
<th>Cohort</th>
<th>Latency (years)</th>
<th>Mutations (VAF)</th>
<th>WBC (10^9/L)</th>
<th>HGB (g/dL)</th>
<th>PLT (10^9/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>CANCER OF SPLEEN</td>
<td>AJ</td>
<td>6</td>
<td>JAK2 p.V617F (0.23)</td>
<td>7.8</td>
<td>11</td>
<td>247</td>
</tr>
<tr>
<td>64</td>
<td>LEUKEMIA (prior NHL)</td>
<td>AJ</td>
<td>7</td>
<td>ASXL1 p.D616fs (0.18)</td>
<td>3.5</td>
<td>12.9</td>
<td>189</td>
</tr>
<tr>
<td>57</td>
<td>LYMPHOMA</td>
<td>AJ</td>
<td>2</td>
<td>DNMT3A p.R882H (0.29)</td>
<td>14.3 (51.3% lymphocytes)</td>
<td>11</td>
<td>248</td>
</tr>
<tr>
<td>85</td>
<td>DLBCL, large intestine</td>
<td>MEC</td>
<td>5</td>
<td>TET2 p.C1135Y (0.35)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TET2 p.G1192V (0.30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASXL1 p.I919fs (0.26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>MDS-RAEB</td>
<td>MEC</td>
<td>7</td>
<td>ASXL1 p.T514fs (0.30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TET2 p.1616fs (0.15)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A new clinical entity: Clonal Hematopoiesis of Indeterminate Potential (CHIP)

- Defined as a detectable clonal mutation in the blood of healthy persons without known hematologic disorder
- Is common with aging (present in at least 10% of all persons age>70)
- Associated with increased relative risk of malignancy, but low absolute risk (~0.5-1% per year)
- Associated with cardiovascular disease, but unclear if it is a risk factor, or merely correlated
- No current rationale for screening of healthy persons
Clonal hematopoiesis without known drivers occurs frequently

1. Large structural variation
2. Exonic mutations in unknown genes
3. Non-exonic mutations
4. “Epi-mutation”
5. Loss of clonal diversity due to stem cell attrition

Genovese et al., *NEJM* 2014
Clonal hematopoiesis as a natural “saturation mutagenesis” experiment of human HSCs

Hypothesis:
All possible somatic mutations that can occur will occur in a large enough population.

Those that are neutral or deleterious will not be detected.

Those which become detectable will point to biological pathways that promote self-renewal, block differentiation, or inhibit apoptosis, all of which result in clonal expansion.
Binomial probability as a somatic mutation classifier
Nonsense somatic mutation screen (46K)

409,387 nonsense variants (76,378 unique in 16,585 genes)

\[\downarrow \]

Variants due to Oxo-G artifact

406,258

\[\downarrow \]

Genes with low VAF for known germline SNPs (<0.40)

324,422 (65,376 unique in 14,351 genes)

\[\downarrow \]

Genes that have 50% or more variants at >0.35 VAF

25,155 (2,163 unique in 978 genes)

\[\downarrow \]

Variants present 7 or more times

2,575 (2,059 unique in 967 genes)

\[\downarrow \]

Variants that segregate by ancestry (chi-sq test)

2,371 (1,956 unique in 936 genes)

\[\downarrow \]

Deviation from binomial distribution at \(q < 0.05 \)

1,844 (1,544 unique in 853 genes)

Exome Aggregation Consortium
New genes account for ~15% of mutations
• Zinc finger containing protein; unknown binding specificity
• May function as a co-repressor for androgen receptor target genes
• Required for IgD expression from shared IgD/IgM \(lgh \) transcript
Acknowledgements

Ebert Lab
Alex Silver
Chris Gibson

Broad MPG Group
Sekar Kathiresan
Pradeep Natarajan
Gina Peloso
Namrata Gupta
Stacey Gabriel
David Altshuler
Jason Flannick
Pierre Fontanillas
Noel Burtt
Alisa Manning

BWH Cardiology
Peter Libby
Galina Sukhova

ExAC
Daniel Macarthur
Monkol Lek
Eric Minikel

Broad Cancer Group
Gaddy Getz
Craig Mermel
Scott Carter
Adam Kiezun

DFCI
Donna Neuberg

Steven McCarrol
Giulio Genovese

Jackson Heart Study
James Wilson
Adolfo Correa

Longevity Genes Project
Gil Atzmon

Multiethnic cohort (MEC)
Chris Haiman

Finnish Diabetes Group
Leif Groop
Claes Ladenvall

FUSION
Michael Boehnke
Heather Stringham

Hispanics in San Antonio
Ravi Duggirala