T Cell Transcriptomes from Paroxysmal Nocturnal Hemoglobinuria Patients Reveal Novel Signaling Pathways

Journal Title: 
J Immunol
Primary Author: 
Hosokawa K
Author(s): 
Hosokawa K, Kajigaya S, Keyvanfar K, Qiao W, Xie Y, Townsley DM, Feng X, Young NS
Original Publication Date: 
Monday, June 19, 2017

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired disorder originating from hematopoietic stem cells and is a life-threating disease characterized by intravascular hemolysis, bone marrow (BM) failure, and venous thrombosis. The etiology of PNH is a somatic mutation in the phosphatidylinositol glycan class A gene (PIG-A) on the X chromosome, which blocks synthesis of the glycolipid moiety and causes deficiency in GPI-anchored proteins. PNH is closely related to aplastic anemia, in which T cells mediate destruction of BM. To identify aberrant molecular mechanisms involved in immune targeting of hematopoietic stem cells in BM, we applied RNA-seq to examine the transcriptome of T cell subsets (CD4+ naive, CD4+ memory, CD8+ naive, and CD8+ memory) from PNH patients and healthy control subjects. Differentially expressed gene analysis in four different T cell subsets from PNH and healthy control subjects showed distinct transcriptional profiles, depending on the T cell subsets. By pathway analysis, we identified novel signaling pathways in T cell subsets from PNH, including increased gene expression involved in TNFR, IGF1, NOTCH, AP-1, and ATF2 pathways. Dysregulation of several candidate genes (JUN, TNFAIP3, TOB1, GIMAP4, GIMAP6, TRMT112, NR4A2, CD69, and TNFSF8) was validated by quantitative real-time RT-PCR and flow cytometry. We have demonstrated molecular signatures associated with positive and negative regulators in T cells, suggesting novel pathophysiologic mechanisms in PNH. These pathways may be targets for new strategies to modulate T cell immune responses in BM failure.